
Assassyn: A Unified Abstraction for Architectural Simulation and
Implementation

Jian Weng∗
KAUST

Thuwal, Saudi Arabia
jian.weng@kaust.edu.sa

Boyang Han†
Hong Kong University
Hong Kong, Hong Kong
yqszxx@gmail.com

Derui Gao
KAUST

Thuwal, Saudi Arabia
derui.gao@kaust.edu.sa

Ruijie Gao†
University of Michigan

Ann Anbor, USA
ruijieg@umich.edu

Wanning Zhang
KAUST

Thuwal, Saudi Arabia
wanning.zhang@kaust.edu.sa

An Zhong
KAUST

Thuwal, Saudi Arabia
an.zhong@kaust.edu.sa

Ceyu Xu
HKUST

Hong Kong, Hong Kong
eeentropy@ust.hk

Jihao Xin
KAUST

Thuwal, Saudi Arabia
jihao.xin@kaust.edu.sa

Yangzhixin Luo
KAUST

Thuwal, Saudi Arabia
yangzhixin.luo@kaust.edu.sa

Lisa Wu Wills
Duke University
Durham, USA

lisa@cs.duke.edu

Marco Canini
KAUST

Thuwal, Saudi Arabia
marco@kaust.edu.sa

Abstract
The continuous growth of on-chip transistors driven by technol-
ogy scaling urges architecture developers to design and implement
novel architectures to effectively utilize the excessive on-chip re-
sources. Due to the challenges of programming in register-transfer
level (RTL) languages, performancemodeling based on simulation is
typically developed alongside hardware implementation, allowing
the exploration of high-level design decisions before dealing with
the error-prone, low-level RTL details. However, this approach also
introduces new challenges in coordinating across multiple teams
to align implementation details separate codebases.

In this paper, we address this issue by presenting Assassyn, a
unified, high-level, and general-purpose programming framework
for architectural simulation and implementation. By taking ad-
vantage of the concept of asynchronous event handling, a widely
existing behavior in both hardware design and implementation
and software engineering, a general-purpose, and high-level pro-
gramming abstraction is proposed to mitigate the difficulties of
RTL programming. Moreover, the unified programming interface
naturally enables an accurate and faithful alignment between the
simulation-based performance modeling and RTL implementation.

Our evaluation demonstrates that Assassyn’s high-level program-
ming interface is sufficiently expressive to implement a wide range

∗Serve as both the first and correspondence author.
†Both participated in this work at KAUST as research interns.

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISCA ’25, Tokyo, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1261-6/25/06
https://doi.org/10.1145/3695053.3731004

of architectures, from architectural components, and application-
specific accelerators, to designs as complicated as out-of-order
CPUs. All the generated simulators perfectly align with the gener-
ated RTL behavior, while achieving 2.2-8.1× simulation speedup,
and requiring 70% lines of code. The generated RTL achieves com-
parable perf/area compared to handcrafted RTL, and 6× perf/area
compared to high-level synthesis generated RTL code by introduc-
ing by mean 1.26× lines of code overhead.

CCS Concepts
• Hardware → Hardware description languages and compila-
tion; • Computer systems organization → High-level language
architectures; Data flow architectures; Pipeline computing.

Keywords
Performance Modeling and Simulation, Open-source Hardware,
High-level Hardware Description Language
ACM Reference Format:
Jian Weng, Boyang Han, Derui Gao, Ruijie Gao, Wanning Zhang, An Zhong,
Ceyu Xu, Jihao Xin, Yangzhixin Luo, Lisa Wu Wills, and Marco Canini.
2025. Assassyn: A Unified Abstraction for Architectural Simulation and
Implementation. In Proceedings of the 52nd Annual International Symposium
on Computer Architecture (ISCA ’25), June 21–25, 2025, Tokyo, Japan. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3695053.3731004

https://orcid.org/0000-0002-7933-9941
https://orcid.org/0000-0003-2024-366X
https://orcid.org/0009-0004-3273-1753
https://orcid.org/0009-0002-8849-1643
https://orcid.org/0009-0006-6940-8209
https://orcid.org/0009-0008-4806-0586
https://orcid.org/0000-0002-2668-6456
https://orcid.org/0000-0002-8117-9422
https://orcid.org/0009-0005-4364-1240
https://orcid.org/0000-0002-3574-3440
https://orcid.org/0000-0002-5051-4283
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3695053.3731004
https://doi.org/10.1145/3695053.3731004

ISCA ’25, June 21–25, 2025, Tokyo, Japan Jian Weng et al.

Design Idea &
Decisions

Evaluate the design
quality in high-level
Detailed low-level

implementation

Iterate over designs,
and align details

(a) A Typical Architectural Design & Implementation Flow

(b) Assassyn: Unifying Simulation and Implementation

Implement in our lang

Generated
Simulator

Generated
RTL Impl.

Assassyn
Lang.

High
-le

ve
l

ev
alu

ati
on Export RTL

Implementation

☺ Teams closely work together on the same code base

☹ Separate codebases

☹ Coordinate across teams

☹ Low-level & err-prone
RTL Impl.

☺ Naturally aligned modeling and RTL

Iterate over designs

Performance
Modeling

RTL
Implementation

Design Idea &
Decisions

☺ Unified, general-purpose
high-level abstraction

Figure 1: A typical flowof architectural design and implemen-
tation compared to our goal, designing and implementing in
a unified, high-level, and general-purpose interface.

1 Introduction
Technology scaling continues to provide abundant on-chip transis-
tors, urging developers to create innovative architectures to effec-
tively utilize these resources. These architectural innovations have
attracted significant attention from both industry and academia for
their potential to deliver remarkable performance gains and energy
efficiency. However, realizing these innovations is no small feat; as
shown in Figure 1(a), transforming an architectural design into a
hardware implementation demands a lengthy and complex process
involving collaboration across multiple teams. The excessive low-
level details exposed by Register-Transfer Level (RTL) language
significantly hinder the design space and decision exploration of an
architecture. To address this, simulation-based performance mod-
els are often developed alongside hardware implementations, so
that high-level design ideas and decisions can be evaluated before
confronting the challenges of error-prone RTL language.

However, this two-pronged approach introduces a significant
challenge: maintaining and aligning simulation-based modeling
and RTL implementation of the target architecture imposes sub-
stantial coordination burdens across multiple teams. This difficulty
stems from using different codebases and programming languages
for performance modeling and RTL implementation, leading to
potential inconsistencies and increased development time.

Prior works [5, 7, 10, 11, 13, 16, 19, 21, 23–26, 29, 31, 33–35, 37,
40, 41, 45, 49, 52–54, 60, 62–64, 66, 69, 70, 75, 76, 79, 81] 1 follow
this design and implementation paradigm, reporting performance
numbers from simulation-based modeling, and the power/area eval-
uations from separate synthesized RTL implementations. However,

1All these papers are from a single conference proceedings, ISCA 2024.

the alignment between the simulation and hardware implementa-
tion is often overlooked, highlighting a persistent challenge of this
two-pronged approach.
Our Goal (cf. Figure 1(b)): Recognizing these limitations in cur-
rent practices, we propose that an ideal architectural design and
implementation workflow shall have a unified, general-purpose, and
high-level language to describe the architecture design to generate
both cycle-accurate simulation and RTL implementation. This ap-
proach enables multiple teams to collaborate closely, iterating on
high-level design decisions and implementation details together,
while seamlesslymaintaining alignment between performancemod-
eling and RTL implementation. The generated RTL implementation
should have minimized overhead caused by high-level abstraction.
Prior works [27, 65, 68, 72] automate architecture design and im-
plementation by adopting high-level programming interfaces that
unify the software development and hardware generation; however,
they all failed to be general-purpose — their target application do-
main or underlying hardware is limited within a designated scope.
Our Approach: In light of these limitations, we propose Assassyn2,
a fundamentally different approach that unifies the general-purpose
hardware design and implementation in a high-level programming
abstraction. Our approach is enabled by generalizing the hardware’s
behaviors: Pipelined designs are widely adopted to improve the per-
formance and frequency in modern architectures, and our insight is
that both simulating and implementing such pipelined architectures
can be abstracted as asynchronous event handling. By leveraging
several widely adopted concepts in functional programming (high-
order functions and bind) and software engineering (async event
handling), a high-level and general language for pipelined hard-
ware description is developed to better manage the error-prone and
tedious efforts in RTL programming, and explore the high-level
design parameters decoupled from the architectural designs. The
key contributions of Assassyn are:

• Recognizing a generalized paradigm for pipelined architec-
tures’ design and implementation.

• Based on this generalized paradigm, a unified, high-level,
and general-purpose programming language is proposed for
hardware simulation and implementation. To the best of
our knowledge, this is the first RTL generator that is both
high-level, and general-purpose.

• By integrating a fully open-source workflow, from frontend
language to synthesis tool, and technique library, an end-
to-end flow is presented to maximize the reproducibility of
architectural research.

Our evaluation shows that Assassyn’s programming abstraction is:
1. highly productive to easily target architecture designs and imple-
mentations while requiring only 70% of lines of code; 2. sufficiently
expressive to target diverse prior designs, from design components
to end-to-end accelerators and CPUs; 3. efficient to generate RTL
implementation with comparable quality compared to handcrafted
designs.

The rest of the paper is organized as follows: the backgrounds on
the existing approach on hardware design and implementation will
be overviewed in Section 2 to motivate our approach; the technical

2Assassyn is the acronym for asynchronous semantics for architectural simulation
and synthesis.

Assassyn: A Unified Abstraction for Architectural Simulation and Implementation ISCA ’25, June 21–25, 2025, Tokyo, Japan

module IF(output inst);
 always @(posedge clk)
 inst <= mem[pc]; /*...*/
endmodule

module ID(
 input inst,
 output opcode, output data,
); /*...*/
endmodule

module top();
 logic inst_o;
 logic inst_i;
 IF fetcher(.inst(inst_o));
 StageFIFO if_id(
 .in(inst_o), .out(inst_i));
 ID decoder(
 .inst(inst_i),
 // Connect to EX stage
 .opcode(...), .data(...));
endmodule

(a) A Simple 5-stage Pipelined CPU

(c) SystemVerilog
(FIFO impl & valid/ready omitted)

(b) Event-driven Modeling
class IF:
 def sim(q, event):
 pc += 4
 inst = mem[pc]
 q.push(Event(ID, inst))

class ID:
 def sim(q, event):
 # decode event.inst
 e = Event(EX,
 data, opcode)
 q.push(e)

def engine():
 # key by Event.stamp
 q = PriorityQueue()
 while !q.empty():
 event = q.pop()
 if event.kind == IF:
 IF.simulate(q, event)
 elif event.kind == ID:
 ID.simulate(q, event)
 elif ...:

IF ID EX MA
inst

opcode

data

opcode

data

WB
reg-id

result

FIFO

FIFO

opcode

data
FIFO

pop.ready
pop.data

pop.valid

inst
push.valid

push.data

ID
(Combinational

Logic)

push.valid

push.data
push.valid

push.data

pop.data

pop.valid

pop.data

pop.valid

(a.1) Generalized μArch

IF EXIDIF IDIF

cycle 0 1 2 3 4 5

clk

IF pc pc pc pc pc

ID inst inst inst inst

EX

Cycle 1 2 3
(d) Event Queue Trace & Waveform

FIFOs are adopted as stage buffers

Waveform and event trace are
equivalent in a transposed manner

Figure 2: A 5-stage pipeline evaluated in both an event-driven
simulator, and an RTL simulator.

details of Assassyn will be explained in in Section 3, 4, and 5, includ-
ing the programming abstraction, compiler transformations, and
the runtime and 𝜇-architectural support. Finally, the experiment
setup and the evaluation will be presented in Section 6 and 7 so
that we can discuss and conclude this work in Section 8.

2 Background & Motivation
In this section, we first overview the existing technologies for hard-
ware modeling and implementation, highlighting their challenges
and opportunities, to motivate our proposed unified, high-level, and
general-purpose programming interface for both simulation-based
modeling, and pipeline description.

2.1 Pipeline Design & Implementation
Pipelining is widely adopted in modern architectures to improve
the performance by separating interdependent logic into multiple
stages, so more transistors remain active simultaneously. While
promising, this architectural paradigm imposes additional imple-
mentation challenges in managing the communications and timing
among pipeline stages. To mitigate these challenges, before engag-
ing with these low-level and error-prone details exposed in the RTL

stage Stage0(a, b) {
 a = Stage0.a.pop();
 B = Stage0.b.pop();
 c = a + b;
 Stage1.c.push(c);
 subscribe func; }

stage Stage1(...) { ... }

stage Stage0(a, b) {
 c = a + b;
 async_call Stage0(c); }

stage Stage1(c) {
 wait_until c.valid();
 async_call Stage2(...); }

Sec V. Code Gen

Sec III. Assassyn Lang.

Sev IV. Compiler

Module
Events
Module
Events

Event
Stage0

Simulator Engine

Stg. 0 Stg. 1
SM

Key	Features:	
1. Pipelined	Stages	in	Functions	
2. Combin.	&	Sequential	Logic	
3. Async	Call	
4. Cross-stage	Reference	
5. Spin	Lock	
6. Hierarchical	Synthesis	
7. Bind	the	Dataflow	
8. Set	FIFO	Depth	
9. Syntatical	Sugar

Phases:	
1. Enforce	no	Acyclic	Dependences	
2. Rewrite	Multi-call	Arbitration	
3. Lower	to	FIFO	Operations

1.	Simulation	Generation	
2.	RTL	Implementation

SM

Prog IR

Naturally aligned

1

2

(a) Language Frontend

(b) Compiler Opt. & Rewrite

(c) Target Both Backends
ImplSim

Figure 3: An overview to Assassyn.

language, simulation-based performance models are often built
alongside to explore the high-level design decisions.
Simulation-based Hardware Modeling: Many prior works’ per-
formances were modeled by either implementing in-house [11, 19,
23, 29, 62] or extending existing open-source [9, 14, 30, 36, 48, 61]
simulators. These simulation-based models provide detailed perfor-
mance insight into the architectural pipeline by tracking the state
and behaviors of each pipeline stage in each cycle.

As illustrated in Figure 2(b), event-driven simulation is a typical
approach of simulating a 5-stage CPU pipeline by maintaining an
event queue. Each stage’s functionality is simulated by popping and
processing the corresponding event. Notably, each stage triggers
the next stages by pushing an event instance associated with its
inputs to the queue, which is similar to asynchronously invoking
a function. For example, the IF stage enqueues an event for the
ID stage with fetched instruction associated, while ID’s simulation
will not be occur until the next cycle, which is akin to invoking
ID.sim asynchronously.

The event engine terminates once the queue is empty, or it
reaches a predefined cycle threshold. This simulation-based ap-
proach allows developers to rapidly explore design ideas and deci-
sions at a high level, but unrealistic assumptions may significantly
compromise the accuracy of simulation results [51]. In addition, the
fundamental differences between the programming models cause
a nontrivial effort to bridge the simulated designs to actual RTL
implementations.
Hardware Implementation: To mitigate the difficulties in pro-
gramming low-level RTL language, prior works automate architec-
ture design and implementation by trading off the generality. For in-
stance, with a designated architectural paradigm, highly specialized
designs can be generated for the given sets of the target applications,
by tuning the parameters and adjusting the topology of the template
architecture [39, 56, 72]. Some other works [27, 65, 68] focus on
particular application domains or constructs, such as perfect loop
nests, allowing these frameworks to achieve performance compara-
ble to or even surpassing hand-crafted designs. However, when an
application or architecture design falls outside the framework scope,

ISCA ’25, June 21–25, 2025, Tokyo, Japan Jian Weng et al.

developers must either extend the framework to accommodate new
designs or revert to manual implementations.

A RTL language, such as SystemVerilog, offers full control over
the underlying hardware implementation, from the circuit structure
to the cycle timing. While this fine-grain control is necessary for
many optimal designs, exposing excessive low-level details also
make the programming process complex and error-prone. Com-
mercial and open-source RTL projects, like Bluespec Verilog [1],
and Chisel [6], attempted to alleviate these difficulties by offering
syntactic sugar and encapsulated APIs, but still, these tools adhere
closely to the RTL’s programming and execution model, leaving
the fundamental challenges on dealing with timing, concurrency,
and cycle-carried state machines unresolved.
Challenges and Opportunities: In contrast to event-driven sim-
ulation, which pushes data forward through pipeline stages, RTL
programming follows an event-listen paradigm where stages pull
in data to process their state machines. Figure 2(c) shows the IF
stage listens to clk signal to fetch instructions, and the ID stage
listens to fetched inst from IF. This pull/push mismatch creates a
significant gap between architecture design and implementation.
However, Figure 2(d) suggests that there exists a fundamental corre-
spondence between simulation traces and waveforms when viewed
in a transposed manner. This correspondence presents an oppor-
tunity to create a unified abstraction to bridge the simulation and
RTL implementation.

2.2 Event-driven Programming
Based on the correspondence between the event trace and the
RTL waveform, accompanied with the asynchronous event-driven
nature in hardware simulation, wemotivate an asynchronous event-
driven programming abstraction to bridge the architectural simu-
lation and implementation. Before introducing this programming
abstraction in the next section, we first formalize a generalized
architecture pipeline model and relate this model to event-driven
programming.
Asynchronous Event-handling&Pipeline Stages:An asynchro-
nous event is executed when its corresponding entry in a bookkeep-
ing FIFO is scheduled. Pipeline stage activation can be abstracted
as asynchronous event handling in a similar mechanism: When a
pipeline stage is called, its bookkeeping state machine is subscribed.
This subscription remains until the stage is activated, at which point
it is cleared. Moreover, the boundary between synchronous and
asynchronous execution naturally defines the scope of timing.
Cycle-bound Timing: In Assassyn, each pipeline stage naturally
defines a cycle-bound scope. Within each pipeline stage, everything
is done in the “current cycle”, and the asynchronously invoked stage
will be executed no earlier than the “next cycle”. For example, Fig-
ure 2(d) shows that each pipeline stage is executed in a cycle-bound
manner: each pipeline stage is finished within the current cycle,
and the enqueued new events will not be executed until next cy-
cle. Moreover, the transposed event-waveform correspondence re-
vealed in this figure also implies a perfect cycle alignment between
simulation-based modeling and RTL simulation.
Dataflow across Stages: In architecture design, data flows from
one stage to another, which is analogous to a function call: a stage
(callee) takes inputs from upstream (caller) and produces outputs for

stage fetcher(){
 pc = reg(int(32));
 wait_until decoder.on_br {
 inst = mem[pc];
 pc = pc + 4;
 async_call decoder(inst); } }

stage decoder(inst: bits<32>) {
 opcode = inst[0:6];
 on_br = opcode == 0b001010;
 lhs, rhs = /*decoding*/;
 async_call exec(opcode, lhs, rhs); } }

Function Args
(Ports)

Combinational
Logic

Sequential
Logic

Legends:

C
ro

ss
-s

ta
ge

 c
om

bi
na

tio
na

l r
ef

er
en

ce

Sequential async call

4

3

Figure 4: Pipeline stages, IF, and ID, programmed inAssassyn.

downstream stages (recursively invoke another callee). However,
a key distinction between software programming and hardware
design is that data for callee in software are typically all from a
single caller. In contrast, a pipeline stage can accept data from
multiple upstream stages. This multi-source data flow can be ab-
stracted as function bind (see Listing 1), which is is also known
as functools.partial in Python. This language feature fixes a
subset of the function arguments, and creates a new function with
fewer arguments.

1 from functools import partial
2 def foo(x, y): return x + y
3 goo = partial(foo , 5) # Fix foo.x = 5
4 goo (10) # Equivalent to foo(5, 10)

Listing 1: A function bind example.
Note, this bind approach is not a syntactical sugar. This abstrac-

tion significantly improves the expressiveness. Refer to Figure 5(b)
and explanations in Section 3.7 for more details on how this is used
for dataflow abstraction.
GeneralizedArchitectural Pipeline:As it is shown in Figure 2(a.1),
an architectural pipeline can be generalized as follows: reading data
from the upstream stage buffers, processing them through the intra-
stage combinational logic, and then pushing the results to down-
stream stage buffers. This generalized flow captures the essence of
a pipelined architecture. After decades of research and evolution,
we believe that the communication protocols and signal-handling
mechanisms between pipeline stages have converged toward sev-
eral mature and optimal design patterns. In our design, we adopt a
simple FIFO structure for stage buffers/stage registers, chosen for its
balance between generality, efficiency, and moderate on-chip area
requirements. For more details on the microarchitectural support
and automatic code generation, please refer to Section 5.

All the technical aspects of Assassyn, as well as the synergies
among them, are overviewed in Figure 3. In the following three
sections, we will in detail explain each of them.
3 Assassyn: Abstraction & Syntax
In this section, we will in detail explain Assassyn’s abstraction to
describe a pipelined architecture in a high-level, and general-purpose
programming interface for both cycle-accurate simulation, and RTL
generation by sticking to the examples shown in Figure 4 and 5.
3.1 Program pipeline stages in functions
Functions serve as the most fundamental building block of As-
sassyn to construct each stage of a pipelined architecture. Each
function consists of a unique identifier to reference this function
itself, an argument list for the stage inputs, and the combinational

Assassyn: A Unified Abstraction for Architectural Simulation and Implementation ISCA ’25, June 21–25, 2025, Tokyo, Japan

and sequential logic within its body. Only arithmetic operations,
and conditional statements (i.e. if&select) are supported in the
function bodies. No loops are supported in function bodies. This
restriction ensures that there are no cyclic dependences among the
combinational logic within each function to maintain the neces-
sary acyclic nature for proper hardware synthesis. Each function
corresponds to dedicated on-chip recourses when synthesized, es-
tablishing a direct mapping from our high-level language constructs
to physical hardware components.

3.2 Separate combinational & sequential logic
The scope of a function naturally establishes a clear boundary be-
tween combinational and sequential logic: all arithmetic computa-
tions performed synchronously within this function are considered
combinational , which can be completed within one cycle, while
any side-effect operations (such as register updates, and memory
write) are sequential . These side-effect operations will take effect
in the next cycle, which reflects the inherent timing behavior. As
shown in 1○ of Figure 4 activating a downstream stage is sequential ,
because it involves stage register, state machine writings. The 𝜇-
architectural support for the stage registers and state machines will
be in detail explained in Section 5.2.

3.3 Invoke stages asynchronously
As discussed in Section 2.2, asynchronous function calls naturally
capture the hardware behavior of stage activation — each stage
operates on the output of the previous stage in the subsequent clock
cycle. As it is shown in Figure 4, the fetcher activates the decoder
stage by calling decoder asynchronously, and decoder in turn calls
executor with the decoded results. This chain of asynchronous
calls models the flow of data through the pipeline stages, with
each stage processing its input in one clock cycle and passing the
results to the next stage to be processed in the following cycle. As
overviewed in 1○ of Figure 3, Section 4.3 will elaborate on how the
compiler lowers asynchronous function calls for code generation.

3.4 Reference cross-stage logic
In contrast to conventional RTL syntax, where exposing a value
to an external module requires verbose module instantiation and
explicit pin connections, our language supports a straightforward
cross-stage value reference by directly accessing a variable within
another function body. As shown in c of Figure 4, a combinational
logic decoder.on_br is directly accessed to immediately determine
either to fetch a new instruction or stall. The compiler will auto-
matically determine the type of logic of the cross-stage referenced
value. See Section 3.7 for an example of cross-stage sequential ref-
erence. As overviewed in 2○ of Figure 3, Section 4.1 provides more
details on how the compiler enforces acyclic dependencies among
combinational logic.

3.5 Wait until the spin is unlocked
To provide fine-grained control over the execution of invoked func-
tions, we introduce the wait_until statement. This statement prim-
itive allows a callee function to postpone its execution until a spec-
ified condition is satisfied. When a caller asynchronously invokes
a callee, the callee maintains a bookkeeping mechanism to track
incoming asynchronous calls. If there is at least one pending call,
the callee function continuously checks its wait-until condition to

determine whether it should execute, which works like a spin lock.
If the condition evaluates to true, the function executes and clears
the bookkeeping; if not, it defers execution, retaining the count
of pending calls until the condition becomes true. All the unused
data will be buffered in stage registers, and multiple invocations
will be managed by compiler-generated arbiter. Refer to Section 5.2
and 4 for more details. For example, in Figure 4, the fetcher stage
must wait to fetch new instructions when the decoder detects a
branch instruction, preventing the pipeline from fetching incorrect
instructions and ensuring correct control flow.

Takeaway: These basic primitives discussed above already enable
productive pipeline construction. Next, we will introduce several ad-
vanced language features to further improve the expressiveness, code
reusability, and design modularity.

3.6 High-order function for duplication
In RTL programming, it is normal to duplicate code for similar mod-
ules, typically achieved through parameterized hierarchical synthe-
sis. Since we already use functions to program pipeline stages, it is
intuitive to employ higher-order functions to parameterize functions.
Higher-order functions are functions that return parameterized func-
tions by giving different arguments. Consider the Python example
below. foo will return a two-argument function, which sums up
these two arguments and adds another constant delta, and this
constant delta can be parameterized.

1 def foo(delta):
2 return lambda x, y: x + y + delta
3 goo = foo(5); goo(1, 2) # 1 + 2 + 5

Listing 2: An higher-order function example.
Similarly, in Assassyn, an additional argument list is introduced to
instantiate functions with the given argument list which defines
the signature of the instantiated function. As shown in Figure 5(b),
each systolic processing element is constructed from top-left (1,1)
to lower-right (n,n) by supplying its neighbor PEs (south, and east)
as parameters. To fully explain this example, the semantics of the
bind keyword will be discussed in the next section.

3.7 Bind the dataflow
As mentioned, unlike software function calls where all arguments
for a callee are provided by a single caller, a pipeline stage often
receives data flowed from multiple upstream stages. For example,
in the systolic array shown in Figure 5(a), each (PE) receives inputs
recursively from its northern and western neighbors–no single PE
can asynchronously invoke another with all the necessary data. To
address this challenge, we introduce function bind, similar to the
functools.partial in discussed above in Listing 1, which fixes
certain arguments of a function in advance, effectively managing
partial dataflow from multiple sources.

Figure 5(b) shows how bind can be applied to asynchronous func-
tion calls, when constructing the entire systolic array. For PE𝑖, 𝑗 , its
southern neighbor’s, PE𝑖+1, 𝑗 , northern input is bound (Figure 5(b),
line 8). As illustrated in Figure 5(c), recursively, the eastern PE𝑖, 𝑗+1’s
northern input is already bound on iteration 𝑖−1, 𝑗 . Using the cross-
stage access feature discussed in Section 3.4, we can access this
bound handle and asynchronously call it (Figure 5(b) line 7) to ac-
tivate the downstream stage. This approach not only streamlines

ISCA ’25, June 21–25, 2025, Tokyo, Japan Jian Weng et al.

PE1,1 …

…

……

[#static_timing]
stage PE
 (east:PE,south:bind)
 (west:int<32>,north:int<32>){
 acc = reg(int(32));
 delta = west * north;
 acc = acc + delta;
 async_call east(west=west);
 bound = bind south(north=north); }

Assuming 1-based array, and we
have sentinels for row5 & col5
sa = [PE() array of 5x5];
Recursively connect each PE
for i in 1..4: for j in 1..4:
 sa[i][j] = PE.build(sa[i+1][j],
 sa[i][j+1].bound)
 sa[I][j].fifo_depth(west=1,north=1)

(a) Arch Diagram

(b) Higher-order Stage Function

(c) Top Function Instantiation

PE1,2

PE2,1 PE2,2

Higher-order
Arguments

acc

north

west ×

+

south

east

Legend:

PEi,j

PEi,j-1

PEi-1,j

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
9

Figure 5: A systolic array example for hierarchical synthesis,
and function bind.

the construction of the systolic array but also simplifies the man-
agement of complex dataflows among PEs. For more details on the
.build method, refer to the next section.

3.8 Drive the testbench
To support a testbench function, we reserve the driver identifier.
When present, the pipeline stage corresponding to this function
will be unconditionally activated every cycle, so that this stage
can serve as the testbench to generate the signal that drives the
execution of the entire pipelined architecture.

3.9 Set the FIFO depth
As discussed in Section 2, to keep the generality of the language, we
use FIFOs as our stage registers. Currently, we leave the responsibil-
ity of tuning the sizes of the stage FIFOs to the developers through
the fifo_depth API, as demonstrated in the line 8 of Figure 5(c).

3.10 Syntactical Sugar
Decoupled declaration and implementation: To further ex-
plain the systolic array example, we decouple the declaration and
implementation of each PE. In complex designs, cyclic dependences
among stages may prevent developers from finding a linear order
to instantiate each stage. By decoupling declaration and imple-
mentation, we can first declare the functions without immediately
defining their body logic. Since the function signatures are already
determined, only the signatures are needed when constructing the

struct Entry {
 valid: bits(1), payload: bits(32) }
a, b are identical
a, b = reg(Entry), reg(bits(32))
equivalent to a[0:0] ? a[1:33] : 0
c = a.valid ? a.payload : 0;
use b like a
d = entry.create_view(a)
e = b.valid ? b.payload : 0;

Figure 6: An example for the “struct” syntactical sugar.

top function. We can instantiate all the functions without concern-
ing for the order of their implementation. Line 3 of Figure 5(c)
declares an array of PE objects. The internal behavior of each PE is
determined by calling the method .build, supplying parameters
for the higher-order function argument list .

Takeaway: Decoupled declaration and implementation simplifies
the management of complex interdependences among the stages.
Struct slicing: In hardware design, it is normal to pack multiple
fields into a bit vector. To simplify access to these packed fields, we
introduce a syntactic sugar that allows developers to reinterpret a
bit vector as a struct and access its fields through implicit slicing.
Figure 6 shows the usage of this syntactical sugar, this struct type
can be used to directly declare a data array or create a “view” of an
existing bit vector, enabling convenient field-wise access without
manual bit manipulation.
4 Compiler
The programmed hardware design undergoes an elaboration pro-
cess to generate an intermediate representation (IR), a data structure
that captures all the aspects of the design. This IR is fed to our com-
piler to first enforce the hardware synthesis constraints. If all the
constraints are satisfied, our compiler rewrites the IR for some
hardware-specific transformations. Finally, our compiler lowers
the IR to a format ready for code generation.

In the rest of this section, we will discuss these three phases:
analysis, transformation, and lowering, respectively.
4.1 Analysis
As mentioned above in Section 3.1 and Section 3.4, cyclic depen-
dences among the combinational logic are prohibited. Since loops
are not supported, cyclic combinational logic within a single stage is
inherently prevented. Therefore, the compiler focuses on detecting
cyclic dependencies in the inter-stage combinational logic.

The compiler inspects all the cross-stage references. For each
instance where a combinational expression in one stage references
a combinational expression from another stage, the compiler adds
a dependency edge from the referencing stage to the referenced
stage to construct a dependency graph. For example, the arithmetic
operations in Figure 4 and Figure 5 are considered combinational,
and corresponds to an edge in the graph. However, the async_call
and bind expressions are considered sequential, which will not be
added to the dependency graph.

Once the graph construction is done, the compiler performs a
topological sort: iteratively, it selects and removes a vertex (stage)
with no incoming edges from the graph, along with all its outgoing
edges, until the graph is empty. If at a certain iteration no such
vertex can be found, it indicates that cyclic combinational depen-
dences exist among the stages, and the compiler reports an error.

Assassyn: A Unified Abstraction for Architectural Simulation and Implementation ISCA ’25, June 21–25, 2025, Tokyo, Japan

stage adder(a:int(32), b: int(32))
{ c = a + b; }

stage inc() {
 v = cnt; cnt = cnt + 1;
 async_call adder(v, v); }

stage adder(
 a:int(32), b: int(32)) {
 valid=a.valid()&b.valid();
 wait_until valid {
 c = a + b;
 } }

stage inc() {
 v = cnt;
 cnt = cnt + 1;
 f1 = bind adder(value);
 f2 = bind f1(value);
 async_call f2(); }

stage inc() {
 v = cnt;
 cnt = cnt + 1;
 a = adder.a.push(v);
 b = adder.b.push(v);
 subscribe adder(a, b); }

(a) An Inc-and-add Pipeline

(b.1) Timing Xform for adder (c.1) Call Lowering for inc

(c.2) FIFO Lowering for inc
stage adder(
 a:int(32), b: int(32)) {
 # wait_until omitted
 a_value = a.pop();
 b_value = b.pop();
 c = a_value + b_value; }

(b.2) FIFO Lowering for adder

tra
ns

for
m inc has no inputs,

so xform is omitted.

lower

low
er

low
er

Figure 7: An example for compiler timing transformation
and FIFO lowering.

Once the topological sort is done, this order is preserved for further
simulator generation (see Section 5 for more details).
4.2 Transformation
We developed two specialized transformations for Assassyn that
are especially useful to abstract away the low-level hardware im-
plementation details.
Timing Control: Unlike software programming, where the data
are all immediately available, hardware requires developers to man-
ually manage the timing of data arrival. To hide this low-level detail,
our compiler will by default wrap all the function bodies with a
wait_until statement. As shown in Figure 7(b.1), the wait_until
statement checks if all the operands in the stage buffer are valid.
If any operand is invalid, this adder event cannot proceed. Devel-
opers can also use a #static_timing tag on stages to disable the
transformation, as shown in Figure 5(b).
Arbiter Generation: There are two key constraints that differenti-
ate hardware design from software programming:

(1) Resource allocation: Each function/stage can only be
called/activated once in each cycle, because dedicated on-
chip resources are allocated to each pipeline stage;

(2) Register write: A register can only be written once in each
cycle, and the written value will not take effect until the very
end of the current cycle.

Therefore, to evade these issues, the compiler will automatically
detect the functions with multiple callers and generate an arbiter
for them. As it is shown in Figure 8, both the EX and MA activate
the WB stage to commit the results. However, these activations are
not guaranteed to be mutually exclusive within a single cycle. If
they both activate stage WB in a same cycle, they will not only
activate WB twice, but also write to WB’s stage buffer twice, which
leads to an undefined behavior. Therefore, an arbiter is generated
among these three stages so that two upstream stages write data to
separate sets of stage registers, and the state machine determines
which value to commit. We currently support #round_robin and
#priority_arbiter tags, allowing developers to decide strategies.

EX MA
opcode

WB
reg-id

data result

reg-id

result

…

(a) Arch Diagram

(b) Assassyn Implementation

stage executor(...){
 # ...
 if has_result && no_mem_access {
 async_call
 write_back(reg_id, result); } }
stage memory_access(...) {
 # ...
 if is_mem_read {
 async_call
 write_back(reg_id, result); } }
#[priority_arbiter(memory_access, executor)]
stage write_back(id: bits(5), res:bits(32)) {
 rf[id] = res; }

(c) Rewrite with Arbiter
stage executor(...){
 # ...
 if has_result && no_mem_access {
 async_call arbiter(
 reg_id, result, none, none); } }
stage memory_access(...) {
 # ...
 if is_mem_read {
 async_call arbiter(
 none, none, reg_id, result); } }
stage arbiter(id1, v1, id2, v2)
 valid1 = id1.valid() & v1.valid();
 valid2 = id2.valid() & v2.valid();
 wait_until valid1 | valid2 {
 if grant_valid2 {
 async_call
 write_back(id2.pop(), v2.pop()); }
 if grant_valid1 {
 async_call
 write_back(id1.pop(), v1.pop()); } } }

Arbiter
reg-id

result

Compiler
Rewritten

Legend

Both EX & MA call WB

Both EX & MA call arbiter, but
stage regs are mutually exclusive

MA is higher-priority than EX

Figure 8: An example for compiler-generated arbiter.

In this case, in an in-order CPU, MA executes an earlier instruction,
so it has a higher priority than EX.

4.3 Lowering
Recall that, as discussed in Section 2.2, FIFOs are adopted as our
stage buffers. Therefore, we need to explicitly represent FIFO push
and pop in our IR for code generation.
Function Binds to Pushes. To maintain a unified interface for
compiler implementation, our compiler first rewrites all the multi-
argument function calls and binds to single operand binds, and then
replaces the function call itself with the bound handles. As lowering
rewriting shown from Figure 7(a) to to Figure 7(c.1), the async_call
statement is later replaced by two binds, f1 and f2, and then call
the fully bound handle, f2. After this step, all the function binds will
be replaced by FIFO pushes, and the function call will be replaced
by event subscriptions, as shown in Figure 7(c.2).
Function Pops. When activating a function or stage, the values
in the FIFO buffers should be popped so that the next set of in-
puts is available at the head of the FIFOs for the next cycle. As
shown in Figure 7(b.2), for the functions that implicitly use all their
operands, our compiler will inject FIFO pop at the beginning of the
wait_until body. The FIFO pop statements do not necessarily pop
all the input arguments of a function. For example, as shown in

ISCA ’25, June 21–25, 2025, Tokyo, Japan Jian Weng et al.

for i in 0..cycle_threshold:
 for stage in topo_order(design.pipeline):
 if !stage.event_q.empty():
 if stage.simualte():
 stage.event_q.pop()
 for_each register in design.registers:
 register.commit_pending_write()

(a) Event-driven Cycle-accurate Simulation

def simulate(self):
 if !self.wait_until.cond:
 return false
 reg[0] = a + b
 reg.to_write(0, a + b)

(b.2) 1st-half: Stage Execution

def to_write(self, idx, value):
 assert self.pending_write is None
 self.pending_write = (idx, value)

Register writes will not take effect until 2nd half cycle

Register write should
not be done here

(b.3) 2nd-half: Side-effect Commitment
def commit_pending_write(self):
 idx, value = self.pending_write
 self.payload[idx] = value
 self.pending_write = None # clear it!

Stage Execution Commit Regs

…

A Cycle

(b.1) Simulation Engine
1
2
3
4
5
6
7

1
2
3
4
5

1
2
3

1
2
3
4

Do NOT pop the event
if wait_until is false

Register write should
take effect in 2nd half

Figure 9: Assassyn-generated cycle-accurate simulator

8(c), when the generated arbiter grants execution, only the subset
of the involved operands are popped.

5 Code Generation
After transforming and lowering the IR, the final step is to gen-
erate code for both the simulator and the RTL implementation.
Translating the logic within each stage is straightforward, as our
high-level functional programming interface naturally maps to the
intended program behavior. Therefore, this section primarily fo-
cuses on the runtime support for hardware simulation, and the
microarchitectural support to connect pipeline stages and generate
the RTL implementation.

5.1 Simulator Generation
Figure 9(a) overviews the structure of an Assassyn-generated cycle-
accurate simulator: A simulator engine drives the stage executions
as well as register commitments that occur in each cycle.
Cycle-Accurate Event-Driven Simulation: As illustrated in Fig-
ure 9(b.1), in each cycle, the simulation engine traverses all the
pipeline stages of the hardware design in the topological order
discussed in Section 4.1. This ensures that all the cross-stage com-
binational references access well-defined values.

For every cycle, the simulation is divided into two phases: stage
execution for simulating the behaviors of each stage, and register
commitment to update the values of the registers.
Stage Execution: The first phase simulates the combinational logic
within each stage. Figure 9(b.1) shows that the simulation engine
traverses the event_q of each stage, and invokes the behavioral
simulation function. The return value of each simulation function
is determined by the wait_until condition. If true, this event will
be cleared, and vice versa.

Stage Exec.

SM

Stage Buffer

In-Bound Cross-
Stage Reference

Event
Bookkeeping

Out-Bound Wires

(Dest. Omitted)

(a) A Pipeline Stage Overview

(b) Event Bookkeeping

Counter
Reg.

+

-

Gather event counts from upstream callers

Wait-until clears event by subtracting 1

+ Stage
 Exec.

(d) Stage Buffer: A FIFO Implementation

Stage
 Exec.Front

Tail pop_ready

FIFO payload

pop_data

pop_valid
!=

|
push_valid

1h-sel
push_data

Gather pushes
from upstreams

dec_ready

exec_valid
nez

cnt_delta

(c) Register Read/Write

Reg
Payload

|
write_enable

1h-sel
write_idx

1h-selw
ri
te
_d
at
a

Broadcast Values to
Reader Stages

…
Gather writers
from upstreams

Figure 10: The 𝜇-architectural support for RTL generation.

Register Commitment: As it is shown in Figure 9(b.2) line 4,
during the stage execution phase, values written to registers can-
not take effects immediately. Instead, it writes to each register’s
pending_write bookkeeping by invoking the to_write runtime
API. This to_write API also enforces that each register can only be
written once in each cycle. If a register is written more than once,
an error will be thrown to terminate the simulation, indicating a
mistake in the architectural design. All these pending writes will
be committed to the registers in the second phase of a cycle, and
be cleared for the subsequent cycles’ simulation.
Randomization: Ideally, the order of executing stages in each cycle
should not affect the simulation result. On the other hand, serial-
ized event simulation cannot capture the full details of hardware’s
concurrency. Therefore, we provide a runtime flag to optionally
shuffle the order of the stages without breaking the topological
dependences to emulate the non-determinism.

5.2 RTL Generation
Generating RTL implementations essentially maps each aspect of
the high-level abstraction to highly efficient micro-architectural
components, as overviewed in Figure 10(a).
Combinational Logic: As discussed in Section 3.1, each stage’s
function body is composed of acyclic arithmetic operations, so it is
simple to map each operation to wired combinational logic in RTL.

Assassyn: A Unified Abstraction for Architectural Simulation and Implementation ISCA ’25, June 21–25, 2025, Tokyo, Japan

Table 1: Manual Designs

Target Design Reference

Priority Q [12] Manual Impl.
In-order CPU Sodor [3]Out-of-order CPU
Systolic Array Gemmini [28]

Table 2: HLS-generated De-
signs from MachSuite [58]

Application Data Size

ellpack n=494,m=10
stencil-2d img=1282,f=32
radix-sort n=2048,m=16

kmp n=32000,m=4
merge-sort n=2048

All the cross-stage combinational references can be mapped to pin
ports that connect input/output values among modules.
Event Bookkeeping & Wait-until: We use a counter-based state
machine associated to each pipeline stage to enable the conditional
stage activation and event clearance. Specifically, as shown in Fig-
ure 10(b), each stage’s wait-until condition is wired into this state
machine to decrease the counter, and all the signals from upstream
callers to this stage will be gathered by addition, rather than or, to
ensure no event is missed and increase the counter.
Register Read/Write: The value of register writes will not take
effect until the next cycle, so we use non-block assignment (<=) to
write the registers. Moreover, as discussed above, a register can be
read any number of times in each cycle, while only one write is
allowed. Therefore, we use an or-operation to gather all the writers’
write-enable signal, and conduct a one-hot selection to determine
which value is written to the register. This similar technique is also
applied to FIFO pushes as shown in Figure 10(d).
FIFO as Stage Registers: As discussed in Section 2.2, to ensure
the generality of our language, we adopt FIFOs as our stage register.
These FIFOs can be parameterized by data types determined by the
data enqueued and buffer sizes determined by the fifo_depth API
mentioned above, allowing developers to adjust the data arrival
timing, consumption rate, and buffering. We implemented a pene-
trable FIFO as our template design, and this FIFO will fall back to a
stage register when fifo_depth(1) is given.

See Q4 in Section 7 for more details on the area overhead of
these components discussed above.
6 Evaluation Methodology
Implementation: The current Assassyn frontend is embedded
in Python by overloading the operators. By tracing the Python
program execution, the hardware intermediate representation is
recorded in an abstract syntax tree (AST). Then this AST is fed to our
backend (implemented in Rust) for compiler transformations and
code generation for both simulators and RTL implementations. The
generated cycle-accurate simulators are in Rust, and the generated
RTL implementations are in SystemVerilog.
Designs:3 We select 8 representative reference designs to stress
Assassyn. 3 of them are handcrafted RTL implementations, 5 of them
are HLS-generated from MachSuite [58] as shown in Tables 1 and 2.
We implemented a priority queue in SystemVerilog; the reference
design of CPU and systolic array are from the latest Chipyard
GitHub release [59]; all the HLS workloads are from Bambu [55]’s.
Software Platform:All the Rust codes, both the Assassyn compiler
backend, and the Assassyn-generated simulators, are compiled by
Rust 1.81.0. To simulate the Verilog, we use Verilator v5.027 to

3All the Assassyn-related infrastructures are are available at https://github.com/
Synthesys-Lab/assassyn

cp
u

sy
s-

pe pq

0%

25%

50%

75%

100%

Re
la

tiv
e

Lo
C

12
93

13
2

20
0

90
8

14
9

17
7

km
p

sp
m

v

m
er

ge

ra
di

x

st
-2

d0%

50%

100%

150%

200%

89 85 11
2

15
4

10
3

61

18
6

13
6

30
2

14
7

tb
top
func

Figure 11: Lines of code breakdowns compared to reference
designs, with absolute LoC above. Unhatched is the reference
design, and hatched is Assassyn. (Q2)

compile the SystemVerilog, and the generated C++ simulators are
compiled by GNU GCC-11.4.0.

We use Bambu [55] as our HLS baseline. All the HLS designs are
generated by their bambu-v0.9.7.AppImage release, and simulated
by Verilator. To make a fair comparison, we assume these HLS-
generated designs canmake fully pipelined exclusive scalarmemory
read/write with one-cycle latency.

To estimate the chip area of the given RTL implementation,
including manual, HLS-generated, and Assassyn-generated, we use
Yosys [74], accompanied with ASAP7 [22] technology library, to
synthesize the RTL implementations, with all the memory-related
modules excluded by a (*blackbox*) directive.

All the lines of code (LoC) are counted by feeding related files
to cloc [2]. Then we manually characterize the semantics and
functionality of each part of the code into 3 categories: module, top,
and testbenches.
Hardware Platform: All the simulator performance reported be-
low are single-thread, running on an AMD EPYC-7763 CPU.

Takeaway: All the chosen third-party tools and libraries are open-
source to maximize our reproducibility. We plan to submit for artifact
evaluation release our open-sourced infrastructure upon acceptance.

7 Evaluation
We evaluate three main aspects of Assassyn: the expressiveness of
its abstraction, the quality of the generated RTL implementation,
and the fidelity and performance of the generated simulator. The
key results are:

• Assassyn’s abstraction is expressive enough to program a
wide range of hardware designs, from component modules,
to application-specific accelerators and an end-to-end CPU.

• The generated simulators perfectly align with the RTL simu-
lation results, while achieving 2.2-8.1× speedup.

• The generated RTL achieves near-handcrafted quality in
terms of area, while requiring only 70% of lines of codes.

Next, we will in detail explain these key results by comparing
Assassyn with both hand-crafted RTL, and HLS-generated designs
on several representative workloads.
Q1. How expressive is Assassyn’s abstraction?

Tables 1 and 2 show the diverse target designs we stress Assas-
syn to compare with both handcrafted, and HLS-generated designs.
Each design showcases unique design and implementation chal-
lenges to highlight the effectiveness of Assassyn’s abstraction.

https://github.com/Synthesys-Lab/assassyn
https://github.com/Synthesys-Lab/assassyn

ISCA ’25, June 21–25, 2025, Tokyo, Japan Jian Weng et al.

For example, CPU is nearly a linear pipeline with complex inter-
stage controls. Sequential communications between stages are ex-
pressed in asynchronous function invocations, and the inter-stage
controls are in combinational cross-stage references.

Systolic array, exemplifying a dataflow architecture, presents a
unique challenge in that each PE gathers data frommultiple sources.
Our function bind abstraction effectively enables expressing this
architectural paradigm.

Notably, when manually mapping imperative C code to Assas-
syn for HLS comparison, we observe an interesting pattern: each
Assassyn function resembles a basic block in a control flow graph,
while async_call acts as a branching mechanism between these
blocks. This correspondence not only highlights how our abstrac-
tion bridges the imperative programming model with hardware
design and implementation, but also unveils the potential of lever-
aging Assassyn as a novel HLS backend.
Q2. How well does Assassyn mitigate the difficulties of hard-
ware design and implementation?

Figure 11 presents a comparison of lines of code (LoC) for each
workload between designs implemented with Assassyn and their
corresponding reference implementations, which are either hand-
crafted RTL or HLS-generated code.
Handcrafted RTL: Assassyn requires only 70% of the LoC of the
reference RTL when the design is as complicated as a single-issue
CPU; for simple components, the LoC is comparable to Chisel RTL.
We excluded all the highly overengineered common modules in
Chipyard-related reference designs for Sodor CPU, and Gemmini
systolic array, or the LoC comparison will be badly skewed. For
example, Chipyard overengineered a unified testbench for all the
CPU-based designs in the generator directory, and Sodor adopts
a comprehensive implementation of state control registers (CSR)
from roketchip. These LoC savings are primarily attributed to the
language abstraction provided by Assassyn. Traditional RTL imple-
mentations involve redundant code for pin declarations and con-
nections across hierarchical synthesis, whereas Assassyn simplifies
these aspects through function calls and cross-module references.
HLS-generated Design: Our Assassyn-programmed workloads
require, on average, only 1.26× the LoC of the MachSuite C code,
with testbench harness included, to implement these application-
specific accelerators. Two outliers, spmv and merge require more
than 2× LoC in total. spmv’s kernel alone even demands 11× LoC.
spmv’s kernel complication stems from three memory operations,
2 loads and 1 write, in its loop body. The exclusive memory read-
/write constraints necessitates careful state machine management
to schedule the memory accesses. merge suffers from a similar sit-
uation. Nevertheless, Assassyn’s full control over the underlying
hardware’s micro-architecture and pipeline stages enable better
performance and area tuning. As a result, as shown in Figure 12,
we achieve an order of magnitude improvement in area-normalized
performance over HLS.
Q3. What is the quality of Assassyn-implemented hardware?

As shown in Figure 12, Assassyn-programmed designs achieve
comparable performance per area to handcrafted designs, while
delivering up to 32× and by mean 6× over HLS-generated designs.
Below, we analyze these results by examining both performance
and area characteristics.

pq
sy

s-
pe cp
u

gm
ea

n2−1

20

21

22

23

Sp
ee

du
p/

(N
or

m
al

ize
d

Ar
ea

) Handcrafted

km
p

m
er

ge
ra

di
x

sp
m

v
st

-2
d

gm
ea

n

32 20
HLS-generated

Figure 12: Area normalized perfor-
mance (Q3)

pq
sy

s-
pe cp
u

km
p

m
er

ge
ra

di
x

sp
m

v
st

-2
d0%

20%

40%

60%

80%

100% func fifo sm

Figure 13: Area break-
down (Q4)

pri
que

sys
pe

5stg
cpu

0%

20%

40%

60%

80%

100%

No
rm

al
ize

d
Ar

ea
(A

bs
. V

al
ue

 in
 µ

m
2
 o

n
it)

25
7

13
2

10
42

15
2 33 71
2

22
4

47

97
3

17
6

34

86
3

Handcrafted
Seq. Comb.

km
p

m
er

ge

ra
di

x

sp
m

v

st
-2

d fft

36
5

61
3

77
9 14

96

37
9

10
23

25
3

38
1

52
7

61
9

19
9

39
4

41

17
1

40
9

17
1

21
5

94
8

52

14
0

34
2

11
3

19
9

45
7

Hatched is Assassyn-generated

HLS-generated

Figure 14: Area compared with reference designs (Q3)

m
ed

ia
n

m
ul

tip
ly

qs
or

t

rs
or

t

to
we

rs

vv
ad

d

g-
m

ea
n0.00

0.25

0.50

0.75

1.00

In
st

ru
ct

io
ns

 p
er

 C
yc

le

0.
65

0.
63 0.

71

0.
94

0.
88

0.
80

0.
760.
78

0.
71

0.
72 0.

78 0.
86 0.
89

0.
79

0.
66 0.

74

0.
67

0.
97

0.
90

0.
79

0.
78

(a) CPU Performance
sodor gem5 ours

km
p

sp
m

v
m

er
ge

st
cl-

2d
st

en
cil

-2
d

g-
m

ea
n0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

o/
 H

LS

4.
78

1.
08 1.

41
2.

75
0.

98
1.

81

(b) Accelerator Perf.

Figure 15: CPU/HLS performance comparison (Q3)

Performance: The performance of the priority queue and the
systolic array are estimated by their pipeline initial interval (II). Be-
cause handcrafted references and the Assassyn-programmed ones
achieve the identical desired II, we assume they have the same
performances. Therefore, we only simulated the Sodor CPU to eval-
uate the performance, by running six workloads from the Sodor
project folder. Our implementation achieves slightly better perfor-
mance, 2.6% higher IPC, than Sodor CPU as shown in Figure 15(a),
because we implemented an always-take branch prediction, which
introduces around 3% area overhead as shown in Figure 14.

As shown in Figure 15(b), when comparing with equal provi-
sioned HLS code, Assassyn-programmed designs achieve, on av-
erage, 1.8× speedup over HLS-generated designs. The speedup
primarily stems from two factors: 1) our full control over the un-
derlying pipeline stages and micro-architecture, allowing for more
aggressive pipeline scheduling compared to HLS, and 2) smarter,
human-driven optimizations. In kmp, the length of the pattern string

Assassyn: A Unified Abstraction for Architectural Simulation and Implementation ISCA ’25, June 21–25, 2025, Tokyo, Japan

is only 4, so we implemented a brute force string match to avoid
excessive memory access, and complicated control. In radix_sort,
instead of allocating the radix brackets in SRAM, we use 16 registers
as our radix brackets. This design decision trades off chip area and
the number of iterations required to scan the entire array, while
also eliminating two memory accesses for bracket accumulation.
This simplification reduces the complexity of the state machine
that manages exclusive memory reads and writes in the innermost
loop body. In merge_sort, our implementation adopts an infinite
sentinel to maintain a unified interface of popping merged elements
when one side is exhausted, which simplifies the state transition.
AreaCost:The area comparison is shown in Figure 14. OurAssassyn-
implemented designs achieve comparable area to handcrafted de-
signs with similar functionality (CPU and priority queue). Systolic
PE is an outlier, because Gemmini’s [28] systolic array is highly
flexible for both output and weight stationary models, which intro-
duces extra combinational area to control the state machine inside
the PE. On the other hand, HLS inevitably suffer from area over-
head caused by HLS tools, and our Assassyn-programmed designs
achieve an average area savings of 70%.
Q4. What is the language abstraction overhead of Assassyn?

To better understand our language abstraction overhead, we
characterize the area of two main Assassyn-generated architectural
components, the FIFOs serving as stage registers, and the counter
stage machine serving as stage execution bookkeeping. The area
breakdown shown in Figure 10 are counted by synthesizing each
standalone component, and sum them up, because the synthesis
tool flattens all the architectural hierarchies for more aggressive
synthesis optimizations, which loses the hierarchical information
for components. This approach may slightly enlarge the area of
each component. Their area breakdowns are shown in Figure 13. For
spmv, and stencil-2d, the functionality area is mainly occupied
by the multiplication and accumulation unit, while for radix, the
functionality area is mainly spent on the bracket registers.

The stage registers are inevitable when designing and imple-
menting pipelined architectures. Their areas can be easily tuned
by calling the fifo_depth API. When area 1-depth is given, the
FIFO will fall back to a single stage register. These stage buffers
occupy around 20%-40% of the area in control-heavy designs, e.g.
CPU, priority queue, and merge sort.

In most of the workloads, another language-generated compo-
nent, the counter state machine is a modest overhead (consumes
less than 5% of the total area). An outlier, kmp, is too simple to dwarf
this component — as shown in Figure 14, the absolute area is less
than 100𝜇m2. Though redundant, in many static-timing designs, e.g.
systolic array, such state machines are still generated to maintain a
unified interface for both simulation and RTL generation, which
can be eliminated in our future version.
Q5. What is the quality of the generated simulator?

We evaluate three key aspects of our Assassyn-generated simu-
lators, the alignment, the performance, and debugging.
Alignment: As discussed in Section 2.2, the transposed correspon-
dence between the event simulation traces and the waveform acti-
vation enables a perfect alignment between the simulation-based
modeling and the RTL implementation. Across all our target de-
signs, all the cycles counts from Verilator simulated RTL exactly
match our Assassyn-generated Rust simulator. In contrast, aligning

m
ed

ia
n

m
ul

tip
ly

qs
or

t

rs
or

t

to
we

rs

vv
ad

d

av
g10

20

40

80

160

320

Si
m

ul
at

ed
 k

-c
yc

le
s/

s

408 537

Verilator is
hatched.

CPU Worloads
ref
asyn
gem5

km
p

sp
m

v

m
er

ge

st
cl-

2d

st
en

cil
-2

d

av
g

745 445 901 483HLS Workloads

Figure 16: Assassyn-generated cycle-accurate simulator
compared to Verilator-generated Verilog simulation, and
simulation-based modeling (Q5)

gem5-simulated results with an actual RTL implementation proves
challenging even in a design as simple as a single-issue CPU.

To demonstrate, we configured a minimized in-order, single-
issue, and one-cycle memory access CPU in gem5 23.0. As shown
in Figure 15, while the three implementations — sodor, gem5-
simulated, and ours — achieve similar mean performance, gem5’s
results show significant fluctuations across different benchmarks.
This suggests that the similar mean performance is merely coinci-
dental, resulting from offsetting variations rather than consistent
behavioral alignment with RTL. Our detailed analysis of execution
traces revealed specific sources of misalignment. In median and
vvadd, gem5 CPU outperforms ours because its fetch stage can
access branch execution results within the same cycle — an design
that would lengthen the combinational critical path in actual hard-
ware. Conversely, gem5 underperforms on rsort due to a missed
bypassing opportunity: when instruction A is decoded and depends
on instruction B in writeback, B’s result remains invisible to A
until next cycle while bypass registers already have been flushed
and occupied by other newer instructions in EX and MA. Such
subtle discrepancies can hardly be discovered through extensive
coordination between design and implementation teams, while it
is naturally aligned in our framework.
Performance: As shown in Figure 16, our Assassyn-generated
cycle-accurate simulator implemented in Rust is 2.2× faster than
the Verilator-generated simulator on CPU simulation, and has 8.1×
speedup over HLS ASIC simulation. This speedup comes from the
domain knowledge of simulating pipeline stages, which signifi-
cantly simplifies the architectural simulation model. A generic Sys-
temVerilog simulation/modeling typically involves a rather com-
plicated process to 1. maintain the event queue of each timescale;
2. determine the active and inactive code regions in a fine-grained
style; 3. compute the logics; 4. cleanup each cycle and move time for-
ward [4]. Our two-phase model discussed in Section 5.1 can rapidly
determine the active and inactive code region in the granularity of
each pipeline stage to save simulation time.

For workloads fewer than 10k cycles like vvadd, tower, and
median, gem5’s initialization overhead hinders its performance
compared to both Assassyn and even Verilator-generated simula-
tor. However, for longer-running workloads like qsort and rsort,
gem5 achieves an order of magnitude speedup once this overhead is
amortized. Gem5 excels in raw simulation speed, but our Assassyn-
generated simulators offer a unique cycle-exact correspondence

ISCA ’25, June 21–25, 2025, Tokyo, Japan Jian Weng et al.

m
ed

ia
n

m
ul

tip
ly

qs
or

t

rs
or

t

to
we

rs

vv
ad

d

g-
m

ea
n0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ee

du
p

o/
 B

as
e

De
sig

n

(a) CPU Performance
base bp.f bp.t ooo

Ba
se

Br
. P

re
d

Oo
O0.00

0.25

0.50

0.75

1.00

931

850

973

863
1400

1138

1.00x 1.03x 1.43x

(b) Area Breakdown
seq
comb

Figure 17: CPU performance by incrementally enabling
branch prediction, and out-of-order. bp.f is always not taken,
and bp.t is always taken.

with RTL implementation, which will enable precise debugging and
facilitate seamless transition from design to implementation.
Debugging: Conventional Verilog simulation typically involves
massive concurrency and non-determinism, making it hard to lo-
cate the mistake, while the serialized event-driven simulation, with
operations within the same stage tightly coupled, significantly sim-
plifies tracing execution and analyzing expected behaviors. Most
behavioral bugs can be easily found at this phase.
Q6. How could Assassyn facilitate a seamless architecture
design and implementation?

A key benefit of Assassyn is enabling seamless transition from
architectural design to RTL implementation. Design decisions can
be rapidly evaluated for both performance impact and hardware
cost. We demonstrate this advantage through an progressive CPU
design case study.

We incrementally developed several CPU variants. Starting from
a fully interlocked 5-stage single-issue in-order base design, we
extended it with branch prediction and ultimately implemented an
out-of-order (OoO) version with branch prediction. For the branch
prediction study, we implemented two simple strategies: always-
taken (bp.t) and always-not-taken (bp.f). The performance impact
of each mechanism is shown in Figure 17(a), and the generated RTL
can be immediately synthesized to inspect the cost, as shown in
Figure 17(b). The always-not-taken predictor shows limited perfor-
mance improvement because most branches in these workloads are
taken, particularly loop branches that jump back to the loop header.
This behavior is quantified by the success rate of the always-taken
predictor shown below:

median mul qsort rsort towers vvadd

59.4% 90.6% 64.9% 76.2% 85.7% 71.8%

Both branch predictors require very near on-chip area, so we
only report the always-taken predictor area, which improves the
performance by 1.12× and introduces around 3% area overhead.
OoO Execution: Moreover, our framework scales to designs as
complicated as an out-of-order CPU with always-taken branch
prediction. It achieves 1.26× speedup over the base design, and
introduces 1.43× area overhead. To understand this performance
gain, we profiled each workload execution. Instructions are dis-
patched to reservation station in almost every cycle. An outlier is
qsort, which introduces 2.1% dispatch idle, because of the limited
size of the reservation buffer size. Instructions can retire after 3

cycles when they are on the correct code path, and issuance unit
only is only idle for 5.4% of the cycles, which is mostly caused by
branch misprediction. In more than 99% of misprediction, there is
at most one instruction mistakenly dispatched by the always-taken
branch prediction, because we prioritize the branch instruction exe-
cution on the reservation stations. To sum up, all the profiling above
suggests OoO effectively exploits the CPU pipeline utilization.

When developing, Assassyn illustrates a key advantage: Analo-
gous to software application development, which follows a “algo-
rithm+data structure” paradigm, our Assassyn-implemented out-of-
order CPU follows a “pipeline logic+bookkeeping” approach. This
abstraction naturally separates the core pipeline functionality from
the state management required for out-of-order execution, making
the code base more maintainable.

8 Discussion
The fundamental challenge in architectural design and implementa-
tion stems from the complexity of RTL programming, which led to
the separation of simulation and implementation codebases, while
Assassyn addresses this challenge by reproposing a programming
paradigm to unify the simulation and implementation.

8.1 Related Works
Prior hardware modeling works [14, 15, 17, 43, 80] still remain
highly disconnected between the simulation and implementation.
The prior work closest to our goal should be PyMTL [46] and
Gem5+RTL [47]. PyMTL aims at offering a unified simulation-based
modeling framework to integrate components with different level
of implementation, from functional to RTL, but this still relies on
developers to manually implement of a same component multiple
times. gem5+RTL allows developers to integrate their extended
components written in RTL to a full-system simulation. In contrast
to the framework discussed above, the primary goal of Assassyn is
even more aggressive, unifying the cycle-accurate simulation and
the RTL implementation.

Meanwhile, high-level RTL generators target only a limited sub-
set of architectures, including but not limited to general-purpose
CPUs [17, 77, 78] or domain-specific accelerators [27, 39, 68, 72], or
address individual challenges in hardware description — such as
placement [67] or timing [50]. In contrast, Assassyn seeks an all-in-
one approach for design and implementation by carefully rethinking
abstraction through the lens of software language evolution.

Beyond the scope of this programming paradigm, our work re-
veals two boarder insights on hardware description language and
architectural design compared to prior related works.

Analogous to software programming, we characterize conven-
tional SystemVerilog as assembly code, and Chisel [6] serves as
a intrinsic wrapper (or syntactical sugar) that encapsulates many
common uses of RTL programming, targeting an open-source IR
infrastructure [32], CIRCT (a.k.a. FIRRTL), to mitigate the pro-
gramming difficulties. These prior works still adhere to the cir-
cuit graph abstraction, and pin connections. Meanwhile, software
languages evolved beyond assembly by carefully trading-off the un-
necessary expressiveness. A famous example is the deprecation of
the goto-statement in modern languages: by disabling the exces-
sive flexibility of branching across the basic blocks, programmers’
productivity and code quality were significantly improved. The

Assassyn: A Unified Abstraction for Architectural Simulation and Implementation ISCA ’25, June 21–25, 2025, Tokyo, Japan

compiler can also make stronger assumptions to apply more ag-
gressive optimizations. Assassyn represents a first step toward
a “C-like” abstraction for hardware design and implementa-
tion. Similarly, by carefully constraining the programmingmodel to
event-driven patterns, and binding the dataflow across the pipeline
stages, a higher level of abstraction that retains the expressiveness
to implement many practical architectures is achieved.

Moreover, though many prior works [20, 42, 44, 56, 72, 73] al-
ready demonstrated that domain-specific accelerators can be com-
posed by connecting spatial processing elements, our work sug-
gests an even more fundamental principle: Spatial processing ele-
ment is all you need for pipelined architectural construction. Each
pipeline stage can be viewed as a spatial processing element, and
its functionality can be programmed within an Assassyn function.
A pipelined architecture can be viewed as a spatial arrangement
of these processing elements connected by dataflows. This prin-
ciple becomes particularly striking when considering seemingly
sequential architectures like CPUs — unlike spatial dataflow accel-
erators that typically employ an array of homogeneous processing
elements, CPU pipelines are constructed by connecting multiple
heterogeneous stages, yet still fundamentally adhere to this spatial
arrangement paradigm. This principle may lead to a more agile
design, implement, and evaluation flow for new architectures.

8.2 Future Works
Frontend: When implementing the radix_sort and merge_sort,
we found it particularly challenging tomanually manage the state of
execution and transition across the different phases of the algorithm.
It will be highly desirable to have better abstraction to program
different code regions that share the same inputs but execute under
different conditions, and the transitions across these conditions can
be easily and clearly describe like imperative programming.
Backend: As a programming language, Assassyn occupies a unique
position, which is both domain-specific in its focus on hardware
design and implementation, and general-purpose in its expressive-
ness of the architectural construction. “Domain-specific” typically
implies that additional domain knowledge enables more aggressive
automated optimizations [8, 18, 38, 57, 71, 82] on the programmed
“general-purpose” architecture designs. As discussed above, our lan-
guage naturally encodes: 1. the clear boundary of each pipeline
stage, and 2. the clear separation between the combinational and se-
quential logic. This domain-specific knowledge opens up promising
optimization opportunities to automatically 1. find the critical path
of a design before synthesis; 2. verify the intra-stage and inter-stage
stage machine footprint for complicated designs.
Integration: Assassyn-generated RTL maintains clear correspon-
dence to high-level design intentions, making it more readable than
conventional HLS-generated RTL for both human and machines.
This quality positions Assassyn as a valuable tool for generating
high-quality training datasets for AI for hardware design.

9 Conclusion
We introduced Assassyn, a unified, general-purpose, and high-level
programming framework for hardware design and implementation,
offering a fresh perspective on describing hardware pipelines. Our
evaluation highlights the framework’s advantages in terms of ex-
pressiveness, productivity, and the quality of hardware generation,

demonstrating its potential as a transformative tool in the hard-
ware design space. More broadly, this work establishes a foundation
for a new paradigm in hardware description languages, bridging
the disconnection between the high-level design and the low-level
implementation. In doing so, it opens the door to future research
in automated design optimizations and reimagines the way we
approach hardware design and development.

Acknowledgments
We thank all the anonymous reviewers’ insightful and constructive
comments on this work. This work is fully supported by the base-
line funding offered by King Abdullah University of Science and
Technology (KAUST).

ISCA ’25, June 21–25, 2025, Tokyo, Japan Jian Weng et al.

References
[1] [n. d.]. BlueSpec Verilog. https://bluespec.com/
[2] [n. d.]. cloc counts blank lines, comment lines, and physical lines of source code

in many programming languages. https://github.com/AlDanial/cloc
[3] [n. d.]. Educational Microarchitectures for RISC-V ISA. https://github.com/ucb-

bar/riscv-sodor
[4] 2024. IEEE Standard for SystemVerilog–Unified Hardware Design, Specification,

and Verification Language. IEEE Std 1800-2023 (Revision of IEEE Std 1800-2017)
(2024), 1–1354. doi:10.1109/IEEESTD.2024.10458102

[5] Sam Ainsworth and Lev Mukhanov. 2024. Triangel: A High-Performance,
Accurate, Timely On-Chip Temporal Prefetcher. In 2024 ACM/IEEE 51st An-
nual International Symposium on Computer Architecture (ISCA). 1202–1216.
doi:10.1109/ISCA59077.2024.00090

[6] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Ri-
mas Avižienis, John Wawrzynek, and Krste Asanović. 2012. Chisel: Constructing
Hardware in a Scala Embedded Language. In 49th DAC.

[7] Daehyeon Baek, Soojin Hwang, and Jaehyuk Huh. 2024. pSyncPIM: Partially
Synchronous Execution of Sparse Matrix Operations for All-Bank PIM Archi-
tectures. In 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA). 354–367. doi:10.1109/ISCA59077.2024.00034

[8] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Ab-
durrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman
Amarasinghe. 2019. Tiramisu: a polyhedral compiler for expressing fast and
portable code. In Proceedings of the 2019 IEEE/ACM International Symposium on
Code Generation and Optimization (Washington, DC, USA) (CGO 2019). IEEE
Press, 193–205.

[9] A Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, and T.M. Aamodt. 2009. Analyzing
CUDA workloads using a detailed GPU simulator. In Performance Analysis of
Systems and Software, 2009. ISPASS 2009. IEEE International Symposium on. 163–
174.

[10] Mohammad Bakhshalipour and Phillip B. Gibbons. 2024. Tartan: Microarchitect-
ing a Robotic Processor. In 2024 ACM/IEEE 51st Annual International Symposium
on Computer Architecture (ISCA). 548–565. doi:10.1109/ISCA59077.2024.00047

[11] Rahul Bera, Adithya Ranganathan, Joydeep Rakshit, Sujit Mahto, Anant V. Nori,
Jayesh Gaur, Ataberk Olgun, Konstantinos Kanellopoulos, Mohammad Sadrosa-
dati, Sreenivas Subramoney, and Onur Mutlu. 2024. Constable: Improving Perfor-
mance and Power Efficiency by Safely Eliminating Load Instruction Execution.
In 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture
(ISCA). 88–102. doi:10.1109/ISCA59077.2024.00017

[12] R. Bhagwan and B. Lin. 2000. Fast and scalable priority queue architecture for
high-speed network switches. In Proceedings IEEE INFOCOM 2000. Conference
on Computer Communications. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies (Cat. No.00CH37064), Vol. 2. 538–547
vol.2. doi:10.1109/INFCOM.2000.832227

[13] Anubhav Bhatla, Navneet, and Biswabandan Panda. 2024. The Maya Cache: A
Storage-efficient and Secure Fully-associative Last-level Cache. In 2024 ACM/IEEE
51st Annual International Symposium on Computer Architecture (ISCA). 32–44.
doi:10.1109/ISCA59077.2024.00013

[14] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 simulator. SIGARCH Comput. Archit.
News (2011).

[15] B. Black and J.P. Shen. 1998. Calibration of microprocessor performance models.
Computer 31, 5 (1998), 59–65. doi:10.1109/2.675637

[16] Ishita Chaturvedi, Bhargav Reddy Godala, Yucan Wu, Ziyang Xu, Konstantinos
Iliakis, Panagiotis-Eleftherios Eleftherakis, Sotirios Xydis, Dimitrios Soudris,
Tyler Sorensen, Simone Campanoni, Tor M. Aamodt, and David I. August. 2024.
GhOST: a GPU Out-of-Order Scheduling Technique for Stall Reduction. In 2024
ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA).
1–16. doi:10.1109/ISCA59077.2024.00011

[17] Odysseas Chatzopoulos, George-Marios Fragkoulis, George Papadimitriou, and
Dimitris Gizopoulos. 2021. Towards Accurate Performance Modeling of RISC-V
Designs. arXiv:2106.09991 [cs.AR] https://arxiv.org/abs/2106.09991

[18] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. TVM: An
automated end-to-end optimizing compiler for deep learning. In 13th OSDI.

[19] Hao-Wei Chiang, Chin-Fu Nien, Hsiang-Yun Cheng, and Kuei-Po Huang. 2024.
ReAIM: A ReRAM-based Adaptive Ising Machine for Solving Combinatorial
Optimization Problems. In 2024 ACM/IEEE 51st Annual International Symposium
on Computer Architecture (ISCA). 58–72. doi:10.1109/ISCA59077.2024.00015

[20] S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-Azumi, and J. Anderson.
2017. CGRA-ME: A unified framework for CGRA modelling and exploration. In
28th ASAP.

[21] Md Hafizul Islam Chowdhuryy, Hao Zheng, and Fan Yao. 2024. MetaLeak:
Uncovering Side Channels in Secure Processor Architectures ExploitingMetadata.
In 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture

(ISCA). 693–707. doi:10.1109/ISCA59077.2024.00056
[22] Lawrence T. Clark, Vinay Vashishtha, Lucian Shifren, Aditya Gujja, Saurabh

Sinha, Brian Cline, Chandarasekaran Ramamurthy, and Greg Yeric. 2016. ASAP7:
A 7-nm finFET predictive process design kit. Microelectronics Journal 53 (2016),
105–115. doi:10.1016/j.mejo.2016.04.006

[23] Cansu Demirkiran, Guowei Yang, Darius Bunandar, and Ajay Joshi. 2024. Mirage:
An RNS-Based Photonic Accelerator for DNN Training. In 2024 ACM/IEEE 51st
Annual International Symposium on Computer Architecture (ISCA). 73–87. doi:10.
1109/ISCA59077.2024.00016

[24] Aniket Deshmukh, Lingzhe Chester Cai, and Yale N. Patt. 2024. Alternate Path
Fetch. In 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA). 1217–1229. doi:10.1109/ISCA59077.2024.00091

[25] Quang Duong, Akanksha Jain, and Calvin Lin. 2024. A New Formulation of
Neural Data Prefetching. In 2024 ACM/IEEE 51st Annual International Symposium
on Computer Architecture (ISCA). 1173–1187. doi:10.1109/ISCA59077.2024.00088

[26] Yuan Feng, Seonjin Na, Hyesoon Kim, and Hyeran Jeon. 2024. Barre Chord:
Efficient Virtual Memory Translation for Multi-Chip-Module GPUs. In 2024
ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA).
834–847. doi:10.1109/ISCA59077.2024.00065

[27] Daniel D Gajski, Nikil D Dutt, Allen CH Wu, and Steve YL Lin. 2012. High—Level
Synthesis: Introduction to Chip and System Design. Springer Science & Business
Media.

[28] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav
Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew, Howard Mao, Albert Ou,
Colin Schmidt, Samuel Steffl, John Wright, Ion Stoica, Jonathan Ragan-Kelley,
Krste Asanovic, Borivoje Nikolic, and Yakun Sophia Shao. 2021. Gemmini: En-
abling Systematic Deep-Learning Architecture Evaluation via Full-Stack Inte-
gration. In 2021 58th ACM/IEEE Design Automation Conference (DAC). 769–774.
doi:10.1109/DAC18074.2021.9586216

[29] NikaMansouri Ghiasi, Mohammad Sadrosadati, HarunMustafa, Arvid Gollwitzer,
Can Firtina, Julien Eudine, Haiyu Mao, Joël Lindegger, Meryem Banu Cavlak,
Mohammed Alser, Jisung Park, and Onur Mutlu. 2024. MegIS: High-Performance,
Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Pro-
cessing. In 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA). 660–677. doi:10.1109/ISCA59077.2024.00054

[30] Nathan Gober, Gino Chacon, Lei Wang, Paul V. Gratz, Daniel A. Jiménez, Elvira
Teran, Seth Pugsley, and Jinchun Kim. 2022. The Championship Simulator: Ar-
chitectural Simulation for Education and Competition. arXiv:2210.14324 [cs.AR]

[31] Seunghee Han, Seungjae Moon, Teokkyu Suh, JaeHoon Heo, and Joo-Young Kim.
2024. BLESS: Bandwidth and Locality Enhanced SMEM Seeding Acceleration
for DNA Sequencing. In 2024 ACM/IEEE 51st Annual International Symposium on
Computer Architecture (ISCA). 582–596. doi:10.1109/ISCA59077.2024.00049

[32] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Mag-
yar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, and Jonathan
Bachrach. 2017. Reusability is FIRRTL ground: Hardware construction languages,
compiler frameworks, and transformations. In 2017 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD). 209–216. doi:10.1109/ICCAD.2017.
8203780

[33] Aamer Jaleel, Gururaj Saileshwar, Stephen W. Keckler, and Moinuddin Qureshi.
2024. PrIDE: Achieving Secure Rowhammer Mitigation with Low-Cost In-DRAM
Trackers. In 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA). 1157–1172. doi:10.1109/ISCA59077.2024.00087

[34] Aditya K Kamath and Simon Peter. 2024. (MC)2: Lazy MemCopy at the Memory
Controller. In 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA). 1112–1128. doi:10.1109/ISCA59077.2024.00084

[35] Nikos Karystinos, Odysseas Chatzopoulos, George-Marios Fragkoulis, George Pa-
padimitriou, Dimitris Gizopoulos, and Sudhanva Gurumurthi. 2024. Harpocrates:
Breaking the Silence of CPU Faults through Hardware-in-the-Loop Program
Generation. In 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA). 516–531. doi:10.1109/ISCA59077.2024.00045

[36] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers. 2020.
Accel-Sim: An Extensible Simulation Framework for Validated GPU Modeling. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). 473–486. doi:10.1109/ISCA45697.2020.00047

[37] Tae Hoon Kim, David Rudo, Kaiyang Zhao, Zirui Neil Zhao, and Dimitrios Skar-
latos. 2024. Perspective: A Principled Framework for Pliable and Secure Specu-
lation in Operating Systems. In 2024 ACM/IEEE 51st Annual International Sym-
posium on Computer Architecture (ISCA). 739–755. doi:10.1109/ISCA59077.2024.
00059

[38] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amaras-
inghe. 2017. The tensor algebra compiler. Proceedings of the ACM on Programming
Languages 1, OOPSLA (2017), 77.

[39] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, StefanHadjis,
Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis,
and Kunle Olukotun. 2018. Spatial: A Language and Compiler for Application
Accelerators. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). ACM,
New York, NY, USA, 296–311.

https://bluespec.com/
https://github.com/AlDanial/cloc
https://github.com/ucb-bar/riscv-sodor
https://github.com/ucb-bar/riscv-sodor
https://doi.org/10.1109/IEEESTD.2024.10458102
https://doi.org/10.1109/ISCA59077.2024.00090
https://doi.org/10.1109/ISCA59077.2024.00034
https://doi.org/10.1109/ISCA59077.2024.00047
https://doi.org/10.1109/ISCA59077.2024.00017
https://doi.org/10.1109/INFCOM.2000.832227
https://doi.org/10.1109/ISCA59077.2024.00013
https://doi.org/10.1109/2.675637
https://doi.org/10.1109/ISCA59077.2024.00011
https://arxiv.org/abs/2106.09991
https://arxiv.org/abs/2106.09991
https://doi.org/10.1109/ISCA59077.2024.00015
https://doi.org/10.1109/ISCA59077.2024.00056
https://doi.org/10.1016/j.mejo.2016.04.006
https://doi.org/10.1109/ISCA59077.2024.00016
https://doi.org/10.1109/ISCA59077.2024.00016
https://doi.org/10.1109/ISCA59077.2024.00091
https://doi.org/10.1109/ISCA59077.2024.00088
https://doi.org/10.1109/ISCA59077.2024.00065
https://doi.org/10.1109/DAC18074.2021.9586216
https://doi.org/10.1109/ISCA59077.2024.00054
https://arxiv.org/abs/2210.14324
https://doi.org/10.1109/ISCA59077.2024.00049
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1109/ISCA59077.2024.00087
https://doi.org/10.1109/ISCA59077.2024.00084
https://doi.org/10.1109/ISCA59077.2024.00045
https://doi.org/10.1109/ISCA45697.2020.00047
https://doi.org/10.1109/ISCA59077.2024.00059
https://doi.org/10.1109/ISCA59077.2024.00059

Assassyn: A Unified Abstraction for Architectural Simulation and Implementation ISCA ’25, June 21–25, 2025, Tokyo, Japan

[40] Apostolos Kokolis, Antonis Psistakis, Benjamin Reidys, Jian Huang, and Josep
Torrellas. 2024. HADES: Hardware-Assisted Distributed Transactions in the Age
of Fast Networks and SmartNICs. In 2024 ACM/IEEE 51st Annual International
Symposium on Computer Architecture (ISCA). 785–800. doi:10.1109/ISCA59077.
2024.00062

[41] Weihao Kong, Yifan Hao, Qi Guo, Yongwei Zhao, Xinkai Song, Xiaqing Li, Mo
Zou, Zidong Du, Rui Zhang, Chang Liu, Yuanbo Wen, Pengwei Jin, Xing Hu, Wei
Li, Zhiwei Xu, and Tianshi Chen. 2024. Cambricon-D: Full-Network Differential
Acceleration for Diffusion Models. In 2024 ACM/IEEE 51st Annual International
Symposium on Computer Architecture (ISCA). 903–914. doi:10.1109/ISCA59077.
2024.00070

[42] Kalhan Koul, Jackson Melchert, Kavya Sreedhar, Leonard Truong, Gedeon Nyen-
gele, Keyi Zhang, Qiaoyi Liu, Jeff Setter, Po-Han Chen, Yuchen Mei, Maxwell
Strange, Ross Daly, Caleb Donovick, Alex Carsello, Taeyoung Kong, Kathleen
Feng, Dillon Huff, Ankita Nayak, Rajsekhar Setaluri, James Thomas, Nikhil
Bhagdikar, David Durst, Zachary Myers, Nestan Tsiskaridze, Stephen Richardson,
Rick Bahr, Kayvon Fatahalian, Pat Hanrahan, Clark Barrett, Mark Horowitz,
Christopher Torng, Fredrik Kjolstad, and Priyanka Raina. 2022. AHA: An Agile
Approach to the Design of Coarse-Grained Reconfigurable Accelerators and
Compilers. ACM Trans. Embed. Comput. Syst. (apr 2022).

[43] Zhijing Li, Yuwei Ye, Stephen Neuendorffer, and Adrian Sampson. 2022. Compiler-
Driven Simulation of Reconfigurable Hardware Accelerators. In 2022 IEEE Inter-
national Symposium on High-Performance Computer Architecture (HPCA). 619–632.
doi:10.1109/HPCA53966.2022.00052

[44] Sihao Liu, Jian Weng, Dylan Kupsh, Atefeh Sohrabizadeh, Zhengrong Wang,
Licheng Guo, Jiuyang Liu, Maxim Zhulin, Rishabh Mani, Lucheng Zhang, Jason
Cong, and Tony Nowatzki. 2022. OverGen: Improving FPGA Usability through
Domain-specific Overlay Generation . In 2022 55th IEEE/ACM International Sym-
posium on Microarchitecture (MICRO). IEEE Computer Society, Los Alamitos, CA,
USA, 35–56. doi:10.1109/MICRO56248.2022.00018

[45] Yunzhe Liu, Xinyu Li, Tingting Zhang, Tianyi Liu, Qi Guo, Fuxin Zhang, and
Jian Wang. 2024. AVM-BTB: Adaptive and Virtualized Multi-level Branch Target
Buffer. In 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA). 17–31. doi:10.1109/ISCA59077.2024.00012

[46] Derek Lockhart, Gary Zibrat, and Christopher Batten. 2014. PyMTL: A Uni-
fied Framework for Vertically Integrated Computer Architecture Research. In
Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchi-
tecture (Cambridge, United Kingdom) (MICRO-47). IEEE Computer Society, USA,
280–292. doi:10.1109/MICRO.2014.50

[47] Guillem López-Paradís, Adrià Armejach, and Miquel Moretó. 2021. gem5 + rtl: A
Framework to Enable RTL Models Inside a Full-System Simulator. In Proceedings
of the 50th International Conference on Parallel Processing (Lemont, IL, USA) (ICPP
’21). Association for Computing Machinery, New York, NY, USA, Article 29,
11 pages. doi:10.1145/3472456.3472461

[48] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation. In
PLDI.

[49] Michele Marazzi, Tristan Sachsenweger, Flavien Solt, Peng Zeng, Kubo Takashi,
Maksym Yarema, and Kaveh Razavi. 2024. HiFi-DRAM: Enabling High-fidelity
DRAM Research by Uncovering Sense Amplifiers with IC Imaging. In 2024
ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA).
133–149. doi:10.1109/ISCA59077.2024.00020

[50] Rachit Nigam, Pedro Henrique Azevedo de Amorim, and Adrian Sampson. 2023.
Modular Hardware Design with Timeline Types. Proc. ACM Program. Lang. 7,
PLDI, Article 120 (June 2023), 25 pages. doi:10.1145/3591234

[51] Tony Nowatzki, Jaikrishnan Menon, Chen-Han Ho, and Karthikeyan Sankar-
alingam. 2015. Architectural Simulators Considered Harmful. Micro, IEEE (Nov
2015), 4–12.

[52] Surim Oh, Mingsheng Xu, Tanvir Ahmed Khan, Baris Kasikci, and Heiner
Litz. 2024. UDP: Utility-Driven Fetch Directed Instruction Prefetching. In 2024
ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA).
1188–1201. doi:10.1109/ISCA59077.2024.00089

[53] Gagandeep Panwar, Muhammad Laghari, Esha Choukse, and Xun Jian. 2024.
DyLeCT: Achieving Huge-page-like Translation Performance for Hardware-
compressed Memory. In 2024 ACM/IEEE 51st Annual International Symposium on
Computer Architecture (ISCA). 1129–1143. doi:10.1109/ISCA59077.2024.00085

[54] Julian Pavon, Ivan Vargas Valdivieso, Carlos Rojas, Cesar Hernandez, Mehmet
Aslan, Roger Figueras, Yichao Yuan, Joël Lindegger, Mohammed Alser, Francesc
Moll, Santiago Marco-Sola, Oguz Ergin, Nishil Talati, Onur Mutlu, Osman Unsal,
Mateo Valero, and Adrian Cristal. 2024. QUETZAL: Vector Acceleration Frame-
work for Modern Genome Sequence Analysis Algorithms. In 2024 ACM/IEEE
51st Annual International Symposium on Computer Architecture (ISCA). 597–612.
doi:10.1109/ISCA59077.2024.00050

[55] Christian Pilato and Fabrizio Ferrandi. 2013. Bambu: A modular framework for
the high level synthesis of memory-intensive applications. In Field Programmable
Logic and Applications (FPL), 2013 23rd International Conference on. IEEE, 1–4.

[56] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao,
Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. 2017.
Plasticine: A Reconfigurable Architecture For Parallel Paterns. In 44th ISCA.
14 pages.

[57] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines.
SIGPLAN Not. 48, 6 (June 2013), 519–530. doi:10.1145/2499370.2462176

[58] B. Reagen, R. Adolf, Y. S. Shao, G. Wei, and D. Brooks. 2014. MachSuite: Bench-
marks for accelerator design and customized architectures. In IISWC.

[59] Berkeley Architecture Research. 2024. Chipyard Framework. https://github.com/
ucb-bar/chipyard.

[60] Yesin Ryu, Yoojin Kim, Giyong Jung, Jung Ho Ahn, and Jungrae Kim. 2024. Native
DRAM Cache: Re-architecting DRAM as a Large-Scale Cache for Data Centers.
In 2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture
(ISCA). 1144–1156. doi:10.1109/ISCA59077.2024.00086

[61] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: fast and accurate mi-
croarchitectural simulation of thousand-core systems. In Proceedings of the
40th Annual International Symposium on Computer Architecture (Tel-Aviv, Is-
rael) (ISCA ’13). Association for Computing Machinery, New York, NY, USA,
475–486. doi:10.1145/2485922.2485963

[62] Kaustubh Shivdikar, Nicolas Bohm Agostini, Malith Jayaweera, Gilbert Jonatan,
José L. Abellán, Ajay Joshi, John Kim, and David Kaeli. 2024. NeuraChip: Accel-
erating GNN Computations with a Hash-based Decoupled Spatial Accelerator. In
2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture
(ISCA). 946–960. doi:10.1109/ISCA59077.2024.00073

[63] Mojtaba Abaie Shoushtary, Jose Maria Arnau, Jordi Tubella Murgadas, and An-
tonio Gonzalez. 2024. Memento: An Adaptive, Compiler-Assisted Register File
Cache for GPUs. In 2024 ACM/IEEE 51st Annual International Symposium on
Computer Architecture (ISCA). 978–990. doi:10.1109/ISCA59077.2024.00075

[64] Sawan Singh, Arthur Perais, Alexandra Jimborean, and Alberto Ros. 2024. Alter-
nate Path 𝜇-op Cache Prefetching. In 2024 ACM/IEEE 51st Annual International
Symposium on Computer Architecture (ISCA). 1230–1245. doi:10.1109/ISCA59077.
2024.00092

[65] Atefeh Sohrabizadeh, Cody Hao Yu, Min Gao, and Jason Cong. 2022. AutoDSE:
Enabling Software Programmers to Design Efficient FPGA Accelerators. ACM
Trans. Des. Autom. Electron. Syst. 27, 4, Article 32 (feb 2022), 27 pages.

[66] Boyu Tian, Yiwei Li, Li Jiang, Shuangyu Cai, and Mingyu Gao. 2024. NDP-
Bridge: Enabling Cross-Bank Coordination in Near-DRAM-Bank Processing Ar-
chitectures. In 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA). 628–643. doi:10.1109/ISCA59077.2024.00052

[67] Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and Luis Ceze.
2021. Reticle: a virtual machine for programming modern FPGAs. In Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Com-
puting Machinery, New York, NY, USA, 756–771. doi:10.1145/3453483.3454075

[68] Jie Wang, Licheng Guo, and Jason Cong. 2021. AutoSA: A polyhedral compiler for
high-performance systolic arrays on FPGA. In The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 93–104.

[69] XinWang, Jagadish Kotra, Alex Jones, Wenjie Xiong, and Xun Jian. 2024. Counter-
lightMemory Encryption. In 2024 ACM/IEEE 51st Annual International Symposium
on Computer Architecture (ISCA). 724–738. doi:10.1109/ISCA59077.2024.00058

[70] Yitu Wang, Shiyu Li, Qilin Zheng, Linghao Song, Zongwang Li, Andrew Chang,
Hai “Helen” Li, and Yiran Chen. 2024. NDSEARCH: Accelerating Graph-Traversal-
Based Approximate Nearest Neighbor Search through Near Data Processing. In
2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture
(ISCA). 368–381. doi:10.1109/ISCA59077.2024.00035

[71] Jian Weng, Animesh Jain, Jie Wang, Leyuan Wang, Yida Wang, and Tony
Nowatzki. 2021. UNIT: Unifying Tensorized Instruction Compilation. In 2021
IEEE/ACM International Symposium on Code Generation and Optimization (CGO).
77–89.

[72] Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah, and Tony
Nowatzki. 2020. DSAGEN: Synthesizing Programmable Spatial Accelerators. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). 268–281.

[73] Jian Weng, Sihao Liu, Zhengrong Wang, Vidushi Dadu, and Tony Nowatzki. 2019.
A Hybrid Systolic-Dataflow Architecture for Inductive Matrix Algorithms. In
HPCA.

[74] Clifford Wolf, Johann Glaser, and Johannes Kepler. 2013. Yosys-A Free Verilog
Synthesis Suite. https://api.semanticscholar.org/CorpusID:202611483

[75] Yifan Yang, Joel S. Emer, and Daniel Sanchez. 2024. Trapezoid: A Versatile
Accelerator for Dense and Sparse Matrix Multiplications. In 2024 ACM/IEEE
51st Annual International Symposium on Computer Architecture (ISCA). 931–945.
doi:10.1109/ISCA59077.2024.00072

[76] Zhiheng Yue, Huizheng Wang, Jiahao Fang, Jinyi Deng, Guangyang Lu, Fengbin
Tu, Ruiqi Guo, Yuxuan Li, Yubin Qin, YangWang, Chao Li, Huiming Han, Shaojun
Wei, Yang Hu, and Shouyi Yin. 2024. Exploiting Similarity Opportunities of
Emerging Vision AI Models on Hybrid Bonding Architecture. In 2024 ACM/IEEE

https://doi.org/10.1109/ISCA59077.2024.00062
https://doi.org/10.1109/ISCA59077.2024.00062
https://doi.org/10.1109/ISCA59077.2024.00070
https://doi.org/10.1109/ISCA59077.2024.00070
https://doi.org/10.1109/HPCA53966.2022.00052
https://doi.org/10.1109/MICRO56248.2022.00018
https://doi.org/10.1109/ISCA59077.2024.00012
https://doi.org/10.1109/MICRO.2014.50
https://doi.org/10.1145/3472456.3472461
https://doi.org/10.1109/ISCA59077.2024.00020
https://doi.org/10.1145/3591234
https://doi.org/10.1109/ISCA59077.2024.00089
https://doi.org/10.1109/ISCA59077.2024.00085
https://doi.org/10.1109/ISCA59077.2024.00050
https://doi.org/10.1145/2499370.2462176
https://github.com/ucb-bar/chipyard
https://github.com/ucb-bar/chipyard
https://doi.org/10.1109/ISCA59077.2024.00086
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1109/ISCA59077.2024.00073
https://doi.org/10.1109/ISCA59077.2024.00075
https://doi.org/10.1109/ISCA59077.2024.00092
https://doi.org/10.1109/ISCA59077.2024.00092
https://doi.org/10.1109/ISCA59077.2024.00052
https://doi.org/10.1145/3453483.3454075
https://doi.org/10.1109/ISCA59077.2024.00058
https://doi.org/10.1109/ISCA59077.2024.00035
https://api.semanticscholar.org/CorpusID:202611483
https://doi.org/10.1109/ISCA59077.2024.00072

ISCA ’25, June 21–25, 2025, Tokyo, Japan Jian Weng et al.

51st Annual International Symposium on Computer Architecture (ISCA). 396–409.
doi:10.1109/ISCA59077.2024.00037

[77] Drew Zagieboylo, Charles Sherk, Gookwon Edward Suh, and Andrew C. My-
ers. 2022. PDL: a high-level hardware design language for pipelined proces-
sors. In Proceedings of the 43rd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation (San Diego, CA, USA) (PLDI
2022). Association for Computing Machinery, New York, NY, USA, 719–732.
doi:10.1145/3519939.3523455

[78] Monir Zaman, Mustafa M. Shihab, Ayse K. Coskun, and Yiorgos Makris. 2018. To-
wards a Cross-Layer Framework for Accurate Power Modeling of Microprocessor
Designs. In 2018 28th International Symposium on Power and Timing Modeling, Op-
timization and Simulation (PATMOS). 229–236. doi:10.1109/PATMOS.2018.8464153

[79] Jianping Zeng, Tong Zhang, and Changhee Jung. 2024. Compiler-DirectedWhole-
System Persistence. In 2024 ACM/IEEE 51st Annual International Symposium on
Computer Architecture (ISCA). 961–977. doi:10.1109/ISCA59077.2024.00074

[80] Nathan Zhang, Rubens Lacouture, Gina Sohn, Paul Mure, Qizheng Zhang, Fredrik
Kjolstad, and Kunle Olukotun. 2024. The Dataflow Abstract Machine Simulator
Framework. In 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA). 532–547. doi:10.1109/ISCA59077.2024.00046

[81] Yilong Zhao, Mingyu Gao, Fangxin Liu, Yiwei Hu, Zongwu Wang, Han Lin, Ji
Li, He Xian, Hanlin Dong, Tao Yang, Naifeng Jing, Xiaoyao Liang, and Li Jiang.
2024. UM-PIM: DRAM-based PIM with Uniform & Shared Memory Space. In
2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture
(ISCA). 644–659. doi:10.1109/ISCA59077.2024.00053

[82] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer
Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez,
and Ion Stoica. 2020. Ansor: Generating High-Performance Tensor Programs
for Deep Learning. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). USENIX Association, 863–879. https://www.usenix.
org/conference/osdi20/presentation/zheng

https://doi.org/10.1109/ISCA59077.2024.00037
https://doi.org/10.1145/3519939.3523455
https://doi.org/10.1109/PATMOS.2018.8464153
https://doi.org/10.1109/ISCA59077.2024.00074
https://doi.org/10.1109/ISCA59077.2024.00046
https://doi.org/10.1109/ISCA59077.2024.00053
https://www.usenix.org/conference/osdi20/presentation/zheng
https://www.usenix.org/conference/osdi20/presentation/zheng

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Pipeline Design & Implementation
	2.2 Event-driven Programming

	3 Assassyn: Abstraction & Syntax
	3.1 Program pipeline stages in functions
	3.2 Separate combgreencombinational & chronredsequential logic
	3.3 Invoke stages asynchronously
	3.4 Reference cross-stage logic
	3.5 Wait until the spin is unlocked
	3.6 High-order function for duplication
	3.7 Bind the dataflow
	3.8 Drive the testbench
	3.9 Set the FIFO depth
	3.10 Syntactical Sugar

	4 Compiler
	4.1 Analysis
	4.2 Transformation
	4.3 Lowering

	5 Code Generation
	5.1 Simulator Generation
	5.2 RTL Generation

	6 Evaluation Methodology
	7 Evaluation
	8 Discussion
	8.1 Related Works
	8.2 Future Works

	9 Conclusion
	Acknowledgments
	References

