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Abstract—FPGAs have been proven to be powerful com-
putational accelerators across many types of workloads. The
mainstream programming approach is high level synthesis
(HLS), which maps high-level languages (e.g. C + #pragmas) to
hardware. Unfortunately, HLS leaves a significant programma-
bility gap in terms of reconfigurability, customization and
versatility: Although HLS compilation is fast, the downstream
physical design takes hours to days; FPGA reconfiguration time
limits the time-multiplexing ability of hardware, and tools do not
reason about cross-workload flexibility. Overlay architectures
mitigate the above by mapping a programmable design (e.g.
CPU, GPU, etc.) on top of FPGAs. However, the abstraction gap
between overlay and FPGA leads to low efficiency/utilization.

Our essential idea is to develop a hardware generation
framework targeting a highly-customizable overlay, so that the
abstraction gap can be lowered by tuning the design instance to
applications of interest. We leverage and extend prior work on
customizable spatial architectures, SoC generation, accelerator
compilers, and design space explorers to create an end-to-
end FPGA acceleration system. Our novel techniques address
inefficient networks between on-chip memories and processing
elements, as well as improving DSE by reducing the amount
of recompilation required.

Our framework, OverGen, is highly competitive with fixed-
function HLS-based designs, even though the generated designs
are programmable with fast reconfiguration. We compared to a
state-of-the-art DSE-based HLS framework, AutoDSE. Without
kernel-tuning for AutoDSE, OverGen gets 1.2× geomean
performance, and even with manual kernel-tuning for the
baseline, OverGen still gets 0.55× geomean performance – all
while providing runtime flexibility across workloads.

Keywords-Reconfigurable architectures; Domain-specific Ac-
celerators; FPGA; CGRA; Design Automation;

I. INTRODUCTION

FPGAs have proven to be highly performant and flexible
hardware accelerators for important data-processing work-
loads (e.g. [1–17]), and have garnered significant traction
in industry (e.g. [18–20]). Unfortunately, FPGAs pose
significant challenges for programmer productivity. With
RTL programming at the extreme end of complexity/low-
productivity, the pragmatic options are high-level synthesis
(HLS) and overlays, described next.

In HLS, a high-level language code (e.g. C with #pragmas)
is lowered to a hardware state machine, and then passed
as RTL to a traditional FPGA synthesis flow. Pragmas
specify hints about the optimal hardware structure (e.g. unroll
factor, initiation interval), and state-of-the-art frameworks
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Figure 1: Overlay Generation Compared to HLS

like AutoDSE [21] explore these parameters on behalf of the
programmer. While highly effective, HLS limits programmer
productivity through high compilation/synthesis times. Also,
multiplexing between applications by reflashing the FPGA
bitstream takes significant time, taking more than a second to
reconfigure modern FPGAs [10,22]. Moreover, HLS designs
are specific to the input application: if any flexibility across
applications is required, it must be programmed-in explicitly.

Alternatively, FPGA overlays map a coarser grain architec-
ture (e.g. CPUs [23–26], GPUs [27–30], CGRAs [31–34])
on top of the FPGA’s fine grain abstractions. While overlays
reduce compilation/synthesis time and are more general, they
experience quite high overheads due to the abstraction gap
between general purpose architectures and the low-level
fine-grain abstractions exposed by FPGAs. Overlays can
be customized with domain-specific extensions [19,35], but
this approach is highly time-consuming.

Vision and Requirements: Our vision is to use an HLS-
like approach where the generated hardware is tuned to
input applications, but which targets a highly-flexible overlay
architecture instead of a fixed-function pipeline. Figure 1
gives the basic idea, where a set of applications are fed to a
design-space exploration (DSE) step to determine the ISA
and resource provisioning in the overlay, and compiling a
new application (and reconfiguring) is extremely fast. Ideally,
small application changes would not require FPGA synthesis.

We envision four requirements for overlay generation to
be successful: 1. the overlay design space must include both
system parameters and a broad accelerator design space, 2. it
must balance generality versus specialization, depending on
the degree of diversity in input applications, 3. the memory
system itself should be highly specializable to the application,
and 4. it has to get competitive performance with traditional
HLS within a reasonable DSE time frame.



Approach: For the first two requirements, we leverage prior
work on flexible multicore system generators (e.g. [36,37])
and spatial architecture synthesis (e.g. [38–46]). Multi-core
system generators enable simple scaling in terms of cores,
cache and network [36]. Spatial architecture1 synthesis can
provide accelerators for each core that are tuned to one
or more applications. Spatial architectures provide a broad
design space from fixed custom datapath accelerators to
systolic arrays and vector architectures to coarse grain
reconfigurable architectures (CGRAs). This flexibility comes
from the graph-based representation of spatial architectures
(nodes are PEs, switches, memory units, etc.).

To enable a highly application-specialized memory-system
(requirement 3), our primary insight is that data-reuse struc-
tures (e.g. DMA engines, scratchpads) must be incorporated
into the spatial architecture design space – i.e. enabling
a custom topology connecting reuse structures to compute
structures. For the DSE to make good decisions, this requires
the compiler to analyze and expose data-reuse analysis to
the spatial-scheduler intermediate representation. We refer
to this technique as spatial-memory exploration.

Finally, for requirement 4, we notice that significant time
is spent on recompiling workloads as the hardware definition
changes. We develop novel techniques for modifying the hard-
ware while preserving the validity of previous compilations.
We call these schedule-preserving transformations.

Implementation and Implications: Our implementation is
called OverGen, which integrates two open-source frame-
works, the DSAGEN [38] spatial architecture generation
framework and the ChipYard [36] SoC generator, and extends
these with support for FPGA resource modeling at the system
level, novel hardware design space extensions, and novel
algorithms for DSE-time reduction.

While much of this work is about the integration of
previous ideas and existing frameworks (with some novel
extensions), the results are profound: Our evaluation suggests
that domain-specific spatial overlays, and the OverGen
framework specifically, have the potential to challenge HLS
as the defacto FPGA design methodology. Our approach
preserves a programmer-friendly interface with short com-
pilation and reconfiguration times, and has competitive
performance across many domains compared to the state-
of-the-art HLS framework AutoDSE [21]. Across workload
suites of DSP, Machsuite, and Vitis Vision, OverGen achieves
geomean speedups of 1.21×, 1.13×, 1.25× speedups over
baseline AutoDSE without kernel tuning, and it still reaches
comparable performance, 0.71×, 0.37×, 0.65× respectively,
with manual kernel tuning for AutoDSE. Our approach also
enables overlays that support single or multiple workloads by
automatically reasoning about the cross-workload flexibility.

1Spatial architectures are those that expose low-level aspects of hardware
in their ISA, like resource assignment and scheduling of the operand network.
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Figure 2: Decoupled-Spatial Example of Vector Addition

Specifically, our contributions are:

• A full-stack domain-specific overlay generation frame-
work verified on FPGA2.

• Modeling techniques to codesign system parameters and
accelerator design while balancing FPGA resources.

• Novel optimizations for integrating data-reuse into the
spatial architecture DSE and reducing DSE design time.

• Evaluation demonstrating competitiveness against HLS
and cutting edge DSE-for-HLS [21].

Paper Organization: Section II gives background on
our decoupled-spatial accelerator design space. Section III
overviews the approach and benefits. Section IV describes
the spatial memory optimization. Section V covers the details
of overlay design. Sections VI, VII, and VIII cover imple-
mentation, methodology and evaluation, and we conclude
after discussing related work in Section IX.

II. BACKGROUND: SPATIAL ARCHITECTURE SYNTHESIS

Our approach extends prior work on spatial architecture
synthesis to create each overlay tile. This section first gives
background on the accelerator execution model and then
elaborates on design representation, the compilation and DSE
techniques – all are enhanced in this work. We finish this
section by describing the intellectual and practical limitations
of existing spatial architecture synthesis techniques.

A. Decoupled-Spatial Execution

Execution Model: The accelerator execution model we use
in this work is decoupled-spatial [47–55]. In this model,
compute and memory accesses are expressed in a dataflow
graph (DFG), and streams define coarse grain patterns
of memory access, value generation, or communication.
Streams and instructions execute when they receive all inputs
required for one instance of their computation, as in ordered-
dataflow [56]. An example transformation from source to
dataflow graph (DFG) is shown in Figure 2(a) and 2(b); note
the loop is unrolled by two iterations.

2Open-source repository: https://github.com/PolyArch/dsa-framework

https://github.com/PolyArch/dsa-framework


Spatial Hardware and Mapping: Spatial architectures
expose underlying hardware details to the ISA, like the ca-
pabilities and connectivity of hardware elements. Figure 2(c)
shows an example represented as an architecture description
graph (ADG). The ADG is composed of primitives like
processing elements (PEs), switches for routing operands,
DMA for generating memory addresses and requests, and
ports for synchronizing between memory and compute. The
compiler is responsible for mapping instructions, streams, and
communication onto appropriate hardware units (e.g. PEs,
stream engines, and switches); see the example in Figure 2(d).

Spatial Design Space: The modular nature of spatial
hardware and its representation as an ADG, as in Figure 2(c),
lead to a wide design space. The parameters of each
component form a rich space which enables tradeoffs among
performance, flexibility, and hardware cost. The topology is
also flexible, enabling designs from app-specific datapaths,
to vector architectures, mesh-CGRAs and much in between.

B. Spatial Compilers and Pragma Hints

A compiler that bridges high-level programming language
to the decoupled-spatial execution is required to improve the
programming productivity. OverGen leverages and extends
the DSAGEN C+pragma compiler [38,57]. For context, two
pragma extensions hint transformation decisions:

#pragma dsa config
{
#pragma dsa decouple
for (i = 0; i < n; ++i)
for (j = 0; j < n; ++j)

c[i] = a[i+j] * b[j];
}

Listing 1: An FIR example annotated with pragmas

#pragma dsa config This pragma annotates the scope
of decoupled-spatial specialization. All the offloaded code
regions within the compound body will be concurrent on the
spatial configuration.
#pragma dsa decouple This pragma indicates all the
memory accesses under the annotated loop level are alias-free
if they are accessed by different pointers.

Generic Transformation: The instructions within the in-
nermost loop will be sliced into two subsets, computational
and memory access [58]. All the instructions that transitively
depend on the load/store instructions are considered address
generation, and the remaining ones are computational [57].
The computational instructions will be represented in a
dataflow graph and fed to a spatial scheduler; and the memory
instructions will later be fed to the memory analyzer.

Idiomatic and Modular Transformation: The compiler’s
role is to transform the program according to the capability
of a particular design instance. If a certain transformation
demands a specific hardware feature that is unavailable,
a fallback transformation will be applied to guarantee

the success of compilation [57]. After the analysis and
transformation, all mapped instructions to the decoupled-
spatial execution will be replaced by the accelerator ISA.

C. Automated Spatial Accelerator Synthesis

Our work leverages the spatial accelerator synthesis algo-
rithm proposed in prior work [38], where the goal is to find
the best single-core accelerator for a set of input workloads.
The algorithm essentially performs graph-based simulated
annealing on the ADG, using entirely random modifications
and an evaluation function based on a simple performance
and area model. To make DSE fast, the algorithm can avoid
recompiling a kernel if the random hardware changes do not
affect that kernel (“schedule repair”).

Limitations of prior work: We address three key limitations
of prior spatial-accelerator synthesis works [38–43]:

• Datapath Limited: Prior work performs spatial synthesis
on the datapath of a single-core only, avoiding special-
izing memories within a core (e.g. scratchpads and their
topology), and ignoring the shared memory system.

• Reuse Ignored: Prior systems ignore data-reuse as a first-
order design constraint. This information is required to
make good decisions about how to provision memory
and network bandwidths, and it must be captured and
made available by the compiler.

• ASIC Focused: Prior works focus on developing spatial
architectures for ASICs. FPGAs have new challenges for
optimizing across multiple resources (BRAMs, LUTs,
DSPs, etc.), and present a compelling use case.

These limitations prevent prior systems from reasoning
about critical design tradeoffs like core-count vs vector-width,
scratchpad vs cache size, in-core reuse vs shared bandwidth.
To address these limitations, OverGen extends the design
space beyond a single core while considering FPGA resources
(Section V) and adds reuse and memory access structures into
the spatial/graph-level DSE (Section IV) — overall creating
a full-stack overlay generation framework.

III. OVERGEN OVERVIEW & TRADEOFFS

Here we discuss how OverGen spans compilation, design
space exploration, and resource modeling, and then overview
the design space and key tradeoffs.
A. Overview
Compilation: Figure 3 shows the overview of OverGen. We
begin with the compilation flow, which takes the system-
level ADG (sysADG) as input. The sysADG defines the
spatial accelerator and system design spec, and is created
during overlay generation (described later). The programming
interface of OverGen is multithreaded C with aforementioned
pragmas (details in Section VI-E). The LLVM-based compiler
will attempt to create the highest-performance dataflow graph
for the spatial accelerator using its knowledge of the available
hardware features in the sysADG. The compiler then extracts



Compile Time

App 
(C+pragma)

Decoupled-Spatial 
Compiler

memory-Dataflow 
Graph (mDFG)

b[N] a[N]

h(...)

Decoupled-Spatial 
Scheduler

FPGA

Relax DFG Complexity

010010100101
011111001101
010111111001
...

Spatial Mapping
Bitstream

Overlay Design

Model Setup

App4
Decoupled-Spatial 

Compiler

Domain Apps Different mDFGs
for each App

System-level ADG + RTL

Spatial 
Scheduling

+ FPGA
PPA Model

Modify
system
mADGs

PPA

Design Space Explorer

Perf.: IPC
Resource: LUT%, 
FF%, BRAM%, DSP%
...

Optimized ADG on FPGA Overlay

App3App1

App2

Processing Elements

Switches

System-level ADG

FPGA

Ports

Memories

System-level ADG + RTL

FPGA
Synth.
Tool

FPGA Utilization

Network

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

ML-based
FPGA 

Utilization
Model

LUT: xx%
FF: xx%
BRAM: xx%
DSP: xx%

Predicted
FPGA Utilization

Hardware Module
with new specs.

Data
Set

Gen.
&

Training

FPGA
Synth.

Figure 3: Overview of OverGen Framework

the memory access and computation from the program to
construct a Memory-enhanced Dataflow Graph (mDFG);
the mDFG is enhanced with information about array size,
suitability for mapping arrays to scratchpads, and data reuse
of each stream. The program represented as an mDFG is
then mapped onto the ADG by the spatial scheduler, using
the reuse information to make informed decisions. The
mDFG could fail to map to the hardware; if so, the compiler
will “relax” the DFG complexity by using less aggressive
transformations (e.g. reduce unrolling degree [57]).

Overlay Generation: The input to the overlay generation
is a set of workloads which forms the domain of interest.
It is too inefficient to redo the compilation with each
step of DSE. Therefore, the compiler generates a set of
different mDFGs representing program versions that could be
useful for different possible accelerators, and it incrementally
recompiles these during DSE.

Compiled mDFGs are used to guide spatial-accelerator
synthesis: all mDFGs are scheduled to an ADG, and the
ADG is iteratively updated to maximize the objective
(mean performance of the best-performing mDFG for each

workload). There are four innovations over prior work: 1.
the system and spatial accelerator are co-designed; 2. reuse
and array information enables reasoning about memory and
cache allocation at the spatial level, and 3. DSE balances
FPGA resource utilization, and 4. the mDFG resource utiliza-
tion guides ADG transformations with schedule-preserving
transformations, described in Section V-B.

Finally, the chosen sysADG will then be lowered to
synthesizable RTL for the FPGA, in part leveraging hard-
ware generators from DSAGEN [38] and ChipYard [36].
DSAGEN’s microarchitecture implementation is enhanced to
enable pipelining on FPGAs with tight cycle-time constraints.

Model Setup: Our FPGA resource utilization model is
based on per-hardware element models. Elements with a few
parameters (e.g. core) can be exhaustively synthesized. For
elements with many parameters, we use a machine-learning
(ML) based model, trained from synthesizing a representative
design space. Leveraging learned models means that this
framework can more easily be ported to other FPGAs.

B. Overlay Design Space

System Design Space: Our target for the overlay is a ho-
mogenous multi-tile (i.e. multicore) where each tile contains
an instance of the spatial accelerator, associated with a light-
weight control core. Because we target highly-acceleratable
workloads, the control cores are kept simple (single issue,
small private cache), and are only provisioned for managing
accelerator execution. The control cores and accelerators
share access to a shared L2 cache over a crossbar-based NoC.
Overall we explore the number of tiles, NoC bandwidth, L2
banks (for controlling L2 bandwidth), and L2 capacity.

Accelerator Design Space: The first order parameter of the
accelerator is the number of processing elements (PEs), which
determines the maximum compute bandwidth. The topology
determines the flexibility, which can be characterized by the
number and the radix of switches. We support a variety of
functional units (FUs), with datatypes from 8 to 64-bit integer,
and single/double precision float. PEs can have a wider bit-
width than each FU, in which case OverGen generates PEs
supporting subword SIMD.

Streams for memory access and data manipulation execute
on respective “stream engines”:

• DMA: Memory engine for accessing shared L2.
• Scratchpad: Memory engine for private scratchpad.
• Recurrence: Communicating loop-carried dependencies.
• Generate: Generating affine value sequences.
• Register: Pulling data from accelerator to control core.

All stream engines have a parameterizable bandwidth. Mem-
ory stream engines have a capacity (scratchpad only) and
parameter for whether parallel indirect access is supported
(requires reordering hardware). Finally, Ports connect mem-
ory and compute units, enabling synchronization. Their width
determines the maximum ingest/egest rates. Ports have a few



additional parameters for supporting certain stream patterns
(e.g. whether they support automatic padding for non-vector-
width [56] and whether they support meta-data about whether
the stream has computed a dimension of the loop [57]).

C. Key tradeoffs

OverGen opens a variety of tradeoffs that were previously
difficult to explore and would have required manual effort:

Big tiles vs. More tiles: Many acceleratable workloads
benefit from vectorization, while others are difficult to
vectorize due to irregularity or loop dependencies. This
leads to a tradeoff where some domains prefer more small
accelerators (less pipeline/vector parallelism) or fewer large
accelerators (more pipeline/vector parallelism).

L2 cache size vs. Scratchpad capacity: Some workloads
have regular access to private data that can map to scratch-
pads, while less regular codes often benefit from hardware
managed caches. Each domain requires a tailored allocation.

Balancing Bandwidths: The overall design space has
essentially three levels of memory hierarchy, from shared
cache to spatially distributed scratchpads, and reuse in the
computation units. Allocating bandwidths across these levels
requires understanding the compute bandwidth and data reuse
possible in the chosen workloads — these decisions are
tightly coupled with accelerator size and number of tiles.

Compute Density vs. Generality: If the goal of the overlay
is to support either many workloads or dissimilar workloads,
a more general overlay is required. This tradeoff can be
made by constructing a flexible datapath at the cost of more
resources, thus affecting all of the above tradeoffs.

IV. SPATIAL MEMORY EXPLORATION

A. Motivating Spatial Memory DSE

Prior spatial architecture synthesis algorithms assume that
all memory elements (scratchpads/DMAs) can communicate
with all computation elements. While this simplifies the
design space and spatial scheduling, it also prevents the
DSE from exploring the best way to connect memories and
processing elements together. Figure 4(a) shows an example
design where memory stream engines communicate over
essentially a crossbar to the spatial compute units. Figure 4(b)
shows the potential of a system that allows spatial memories,
where these engines have local communication with a smaller
subset of elements. Similarly, extending this design space
enables the possibility of deciding between multiple smaller
scratchpads or a single unified scratchpad.

Making these decisions with existing DFG abstractions is
difficult, as they lack two key pieces of information: 1. the
relationship between access patterns and data structures, and
2. the size and reuse of these data structures. Together, these
can enable reasoning about the validity and performance of
spatial memory optimizations.
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Memory-enhanced DFGs (mDFG): We enhance DFGs
with data structure and reuse information by introducing
array nodes, creating what we call a memory-enhanced
DFG (mDFG). Array nodes have edges to streams that
consume or produce those arrays, and we include reuse
properties on streams. An example is in Figure 5 for a
simplified version of FIR. Here, the input array a is stored
in scratchpad for higher bandwidth requirement and reuse.
The size parameter describes the total size allocated in either
DRAM or scratchpad. If it is in scratchpad, the additional
space of double-buffering is included. Also, streams are
annotated with additional information for computing the reuse
factor, including data traffic, data footprint, stationary reuse,
and recurrent reuse (see the “Reuse Analysis” paragraph).

There is now sufficient information in the mDFG to decide
which scratchpad to use — i.e., if data can be routed between
the scratchpad node in the ADG and PE nodes that consume
this data, and if there is enough remaining space in the
scratchpad. If there is ever a limited capacity, the reuse
information can help determine which array node in the
mDFG should be mapped to a scratchpad node; for example,
if an array has a stream with stationary reuse at the port, the
benefit of exploiting reuse at the scratchpad level could be
less than another array without stationary reuse. Note that
the reuse information in the mDFG will also be used in the
DSE for making system-level design decisions (Section V).

B. Software Support for Spatial Memory

To implement spatial memories, we extract array and reuse
information from the program, and embed this in the mDFG
to utilize during spatial scheduling.

Array Node Extraction: As it was discussed in Section II, all
memory operations under the stream pragma are “restricted”
(alias free), so we can extract the arrays involved in the
dataflow graph by analyzing the pointer expressions. Specifi-
cally, we extract all the array pointers that are transitively
used by all the decoupled memory operations. Consider the
example in Figure 5(a): a, b, and c are extracted as array
nodes. An array node has three attributes: pointer, footprint,
data traffic, and memory reuse.

Reuse Analysis: Being aware of memory behaviors that can
be captured by hardware specializations helps both compiler
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optimization and DSE. Our compiler recognizes these patterns
and annotates them on the associated stream nodes. Next,
we discuss three typical reuse patterns, general, stationary
and recurrent through the example in Figure 5(a) and (b).

General Reuse refers to when a memory stream repeatedly
accesses a set of data within a program region. Scratchpad is
often favored to exploit this reuse, provided there is sufficient
capacity. Reuse can be identified by finding a discrepancy
between data footprint (array or tile size) and traffic (number
of uses). Consider the operand a[i*32+ii+j] from the
innermost loop; the compiler recursively analyzes and joins
the memory boundaries touched by each loop, and finally
computes that 255 elements are in the memory footprint. To
compute the data traffic, the compiler notes that every loop
variable is involved in this pointer expression, which means a
different element is accessed in each iteration. Thus, the data
traffic of this operand is computed by multiplying all loop
trip counts, i.e. 32×128×32 = 16384. This indicates that
each element is reused an average of 16384

255 times. Indirect
memory access, e.g. a[b[·]], can also be analyzed similarly.
To simplify, we assume: 1. b[·] is linear and can be analyzed
by the above techniques; 2. no memory access will overflow,
and the indirect memory access is a uniform distribution over
array a. Therefore, data traffic is calculated by multiplying
loop trip counts, and the data footprint is the size of array a.

Stationary Reuse refers to an operand repeatedly reused
across the innermost loop so that this operand can be
stationary in the compute substrate (e.g. the port FIFO).
Consider the b[j] operand: Because the innermost loop
ii does not involve the pointer expression, this value is
reused across loop ii 32 times. Even though b[j] also
has general reuse, it does not provide as much value to
map to scratchpad, because much of the reuse is captured as
stationary reuse (i.e. in the port).

Recurrent Reuse refers to when a pair of memory streams
repeatedly update a set of data. When this set of data can
concurrently fit in the data path pipeline and port FIFO, this
pair of streams are favored to use the recurrence stream en-
gine to avoid memory traffic. Consider the c[io*32+ii]:
it repeatedly reads and writes a set of memory touched

by ii (i.e. 32 concurrent instances) along with j (i.e. 32
recurrences). Therefore, when there is enough on-chip buffer
for these 32 concurrent instances, this pair of streams will
be mapped to the recurrence stream engine.

To sum up, reuse behavior captured by scratchpad, port
FIFO, and the recurrence stream engine will all be considered
as the reuse factor; this factor is used to calculate the
bandwidth pressure of each stream in the DSE performance
model (Section V-C).

mDFG Scheduling: Enhancing any spatial-scheduling algo-
rithm to support mDFGs is straightforward. The principle is
to treat array nodes (the ones representing the data structure),
as any other node which must be scheduled onto the ADG,
but with unique scheduling constraints. Intuitively, an array
node can be mapped to a memory stream engine if:

1) There is sufficient remaining space (for a scratchpad).
2) There is a legal route from producers to consumers.
3) The access pattern of all streams for the array node is

supported by the stream engine (e.g. indirect access).
The stream engines in our implementation allow more than

one array each (as they support multiple concurrent streams),
provided there is sufficient capacity. The tradeoff is that the
bandwidth must be shared between any associated streams.
Thus, even if it is legal to map more than one array to a
scratchpad, it is sometimes beneficial to avoid sharing by
using a different scratchpad or even just placing the array
node onto a DMA stream engine; this can help maximize
the utilization of available bandwidth.

Having reuse info on streams can help resolve these
choices. For example, array nodes with stationary reuse
at ports (e.g., read the same value X times) provide less
benefit when mapped to scratchpads than those array nodes
without stationary reuse – this is because their bandwidth
consumption is already reduced. These factors must be
considered during spatial scheduling; thus, we modify the
objective of the spatial scheduler to use the projected
performance of the mDFG, which factors in reuse and
bandwidth bottlenecks. Because this is a critical portion
of the system-level DSE, we explain the performance model
in the next section (Section V-C).



V. UNIFIED SYSTEM & ACCELERATOR
DESIGN SPACE EXPLORATION

The goal of DSE in OverGen is to codesign the system
parameters and accelerator features/topology to maximize
FPGA performance on the set of input applications. Here
we first give an overview, then discuss a novel technique to
use prior schedules to guide spatial DSE, and finally discuss
the performance and area modeling techniques.

A. Overlay Design Exploration

Logically, one iteration of the DSE involves proposing a
new ADG for the hardware, recompiling all the workloads
to it, and evaluating an objective (performance and FPGA
resource use) to guide the next step of DSE — repeat until
convergence. We use three main strategies to reduce the time
for each DSE iteration.

First, we attempt to avoid recompilation as much as
possible. During standard compilation, the compiler will
iteratively back-off from aggressive transformations that
require more resources than available (e.g. reduce the vector
width and recompile). To avoid this during DSE, the compiler
pre-generates different mDFGs for each program region
which each use different transformations (different unrolling
degrees, use a recurrence stream instead of accumulation,
etc.). These different mDFGs are maintained during DSE,
and ultimately only one of them needs to be used (only one
has to schedule correctly to the ADG). While this increases
the up-front cost for the first DSE iteration, it eliminates
from-scratch recompilation during DSE.

Next, we also try to avoid the expensive spatial-scheduling
stage of compilation by reusing the mDFG-to-ADG schedules
from the prior iteration of DSE. A simple approach is to
only re-schedule the portions of the DFG mapped to ADG
elements that were modified (i.e. schedule repair [38]). In
addition, we can use information about prior schedules to
make a more informed decision about how to modify the
ADG (see Section V-B).

Finally, we leverage the disparity between spatial schedul-
ing time (very high) and system-level design-space explo-
ration (quite low). Rather than explore both ADG design
(spatial DSE) and system parameters (system DSE) at the
same level of the DSE, it is relatively inexpensive to nest
system DSE inside of spatial DSE – i.e. run a full exploration
of system parameters every time we modify the ADG. This
improves the convergence of the overall DSE.

DSE Flow Summary: The overall DSE flow is in Figure 6.
At the beginning of each DSE iteration, the spatial DSE will
propose a new ADG named ADG∗. ADG∗ is constructed
using a combination of random and schedule-preserving
transformations (Section V-B). Then, mDFGs are resched-
uled onto ADG∗, leveraging the prior schedules for any
unchanged portions of the ADG. If any program region has
no successfully scheduled mDFGs, then ADG∗ is abandoned,
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Figure 6: OverGen’s Unified DSE Flow

and a new iteration begins. If not, then the system-level
exploration (system DSE) exhaustively searches for the best
system-design parameters for ADG∗ (creating sysADG∗)
based on estimated performance and resource constraints.

The objective function favors estimated performance
first (Section V-C), followed by estimated resources-per-
accelerator (Section V-D). This secondary objective encour-
ages the spatial DSE to prune unneeded resources in the ADG,
even if it does not lead to more cores or higher performance in
the current DSE iteration. The final step is to choose whether
to continue with this ADG∗, which is done stochastically
through a simulated annealing approach.

B. Schedule Preserving Transformations

During each DSE iteration where the Spatial DSE ran-
domly modifies the hardware, it is common that some of
the compiled DFGs can become invalidated due to hardware
deletions or resource reduction. While this can sometimes be
rectified by repairing the schedule to use other resources, it
often cannot be. In these cases, the DSE algorithm either has
to use a lower-performance schedule, less-vectorized DFG.
The repair itself also takes a significant amount of time. This
is unfortunate, because this can even happen when deleting
units that are not necessary: e.g. a switch that is only used
to pass through a value without requiring flexible routing.

Thus, we introduce the concept of schedule-preserving
transformations, which use prior DFG schedules to guide
hardware modifications that preserve their validity. Schedule
preserving transformations are defined as hardware mod-
ifications that simplify the ADG while adding back the
minimum capability to support the existing schedules. Thus,
in essence, schedule-preserving transformations increase
hardware utilization, providing further incentives for the
removal of hardware units that provide less value. Specifically,
we identified three such transformations:

Node Collapsing, as shown in Figure 7(a), occurs when
a unit which performs routing (e.g. a switch) is deleted.
Here, after the routing node is deleted, any routes on
existing schedules that went through the node are used to
define new direct hardware connections from their source to
their destination. Thus, this transformation preserves prior
schedules by ensuring a valid path for routes through a
deleted unit.

Edge Delay Preservation, as shown in Figure 7(b), pre-
serves the pipeline depth of all operands for a PE when an
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intervening routing node is deleted. A balanced pipeline depth
ensures that all operands arrive at the same time to avoid
pipeline bubbles; these bubbles can lower the throughput of
the spatial accelerator [59]. Our approach is to increase per-
operand FIFO-depths in the PE (called delay-fifos) whenever
this imbalance can be observed on an existing schedule.

Module-Capability Pruning prunes excess module capa-
bilities, and associated hardware, that are not needed by
mapped schedules. Without this transformation, the DSE
oftentimes does not have enough incentive to remove some
costly capabilities, and more frequently removes capabilities
that are actually useful.

C. Performance Model with Spatial Memory

To estimate performance, we implemented a bottleneck-
based analysis that captures system-level design parameters,
memory bandwidth at different layers, and computational
bandwidth. Specifically, the overall performance is calculated
as the weighted geometric mean of the estimated IPC for
each mDFG. An mDFG’s IPC is calculated by multiplying
the maximum instruction bandwidth (mDFG Insts) by the
number of tiles and by the lowest bottleneck factor of all
levels of the memory system:

Perf = (mDFG Insts) · (# of Tiles) · min
L1 ...L3

(
RProduction

RConsumption
) (1)

The mDFG Insts factor captures vectorization degree,
allowing the DSE to explore tradeoffs between higher
vectorization degrees and number of tiles. Memory operations,
namely load and store operations, are included within the
estimated IPC to ensure that vectorization of pure data-
movement DFGs is incentivized.

While counting loads and instructions estimates the ideal
IPC, memory bandwidth limitations reduce the observed
IPC, as memory subsystems cannot always supply enough
data to fulfill computational requirements. We compute the
most-bottlenecked performance reduction over L1, L2, and
L3, corresponding to the Scratchpad, L2 Cache, and DRAM.
This bottleneck factor is calculated by dividing the production
and consumption rate (as RProduction

RConsumption
in the previous equation).

These factors are calculated as follows, taking into account
stream reuse factors (see Section IV-B):

RProduction = BWLN ,LN+1 · (# of Banks)

RConsumption = ∑
i=1

(
BW(Streami)

Reuse(Streami)
) · (# of Shared Tiles) (2)

In the above equations, the production rate is computed by
multiplying the bandwidth and bank count at each memory
level. The consumption rate, or data needed to satisfy
compute bandwidth, is the sum of compute data required by
a single tile, multiplied by the number of tiles at that memory
hierarchy level. The single-tile required data is computed
as the summation of all stream bandwidths divided by their
associated reuse rates. We describe how the bandwidth (BW)
and reuse factors are computed at each level:

Scratchpad Bandwidth: With scratchpads replicated across
tiles, the # of Shared Tiles factor is one, making the bandwidth
only depend on vectorization degree. Also, the bandwidth is
calculated separately for the read and write port.

L2 Bandwidth: As L2 Bandwidth is shared amongst tiles,
the consumption rate increases with respect to tile count,
requiring more banks. Accesses to L2 cache occur when a
stream pattern cannot be supported by port reuse or recurrent
data stream, without which the required data production rate
will be increased – thus demanding more L2 Banks.

DRAM Bandwidth: Similar to L2 bandwidth, the consump-
tion rate is dependent on both reuse and tile count; however,
the total FPGA’s DRAM bandwidth is fixed.

D. ML-based FPGA resource model

To rapidly predict FPGA resources, the DSE leverages
a machine-learning (ML) resource prediction model, which
estimates resources on a component-level basis. To generate
the ML model, we perform out-of-context synthesis on
variations of each hardware unit, shown in Table I, to train an
ML-based FPGA resource model. The component-level ML
model implements a 3-layer multi-layer perceptron (MLP),
with an 80%/10%/10% test, train, and validation data split.
As the FPGA resource model was synthesized out-of-context
with no synthesis optimization passes being performed, our
model behaves pessimistically – the projected design point
is larger than the actual post-PnR result.

Hardware Unit Total Synthesized
Processing Elements 100,000
Switches 56,700
Input Port 34,412
Output Port 25,796

Table I: Number of Hardware Modules Synthesized



VI. OVERGEN MICROARCHITECTURE &
IMPLEMENTATION

Our implementation of OverGen integrates prior frame-
works for spatial architecture generation [38] and SoC
generation [36] – both implemented in Chisel [60]. We also
extend these frameworks with an implementation of spatial
memories and a high-utilization memory pipeline suitable for
FPGAs. In this section, we first discuss the microarchitecture
of generated accelerators, show how they interact with the
rest of the system and introduce our implementation of two
key components of OverGen: the stream dispatcher and
stream engine.

A. Implementation Overview

Figure 8 shows a high-level block diagram of an example
dual-tile OverGen overlay architecture mapped to a Xilinx
VCU118. Each OverGen tile (colored in light-blue) is
composed of a RISC-V Rocket [61] control core (colored
in orange) and one instance of the spatial accelerator. The
control-core sends commands and synchronizes with the
accelerator over the RoCC interface [62], and the spatial
accelerator uses a TileLink [63] DMA for memory access.

Within the spatial accelerator, the stream dispatcher
connects the control-core to the spatial memory system, and
coordinates stream execution. All units inside the spatial
memory system are stream engines, whose responsibility is
data movement to and from ports and memories. Stream
engines share a common pipelined implementation.

In the remainder of this section, we discuss how we achieve
high utilization in the stream-dispatcher and stream-engines.

B. Stream Dispatcher Microarchitecture

The stream dispatcher is designed to connect the con-
trol core to the spatial memory system, and manage
stream execution for an arbitrary number of stream en-
gines. Figure 9 shows the hardware organization, and
we explain intuitively by describing streams’ execution
over their lifetime. Each stream’s lifetime has three
steps: stream config, stream instantiation and
stream synchronization.

1 The control core communicates stream parameters and
commands that finalize stream creation to the stream
dispatcher. The stream dispatcher holds a register file for
these parameters so that they can be reused if unchanged
across streams. The stream config step updates this
register file.

2 When a stream finalization command is sent, the
stream instantiation step will decode the reg-
ister values and create an elaborated stream entry for
its corresponding stream engine in the stream dispatch
queue.

3 The stream dispatch queue uses a basic Tomasulo
algorithm [64] at stream synchronization to
see whether its required resource (stream engines,
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ports, etc.) are currently being used by other stream
entries. If yes, the newly created stream entry will
be put into a dispatch queue, waiting for the required
resources to be idle, and then it will be dispatched to its
destination. Dispatch is out-of-order, but respects per-
port request order. The stream synchronization
step is done by stream barrier queue, where the stream
synchronization commands are queued. The stream
synchronization command encodes certain ports / stream
engines resource. It blocks streams to be dispatched if
the ports / stream engines it specified are busy. By
doing so, stream barrier queue can synchronize between
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different stream entries, preventing data hazard.
4 Stream engine performs stream memory access once

the elaborated stream entry is dispatched. It frees the
resource in the scoreboards on stream completion.

Performance Characteristics: This unit can dispatch one
stream per cycle, and up to N number of streams can complete
per cycle (N = number of total stream engines). The minimum
latency of RISC-V instruction completion to stream dispatch
is 2 cycles (one for parameter configuration, one for dispatch
if no resource conflict found).

System Integration & Reconfiguration: The stream dis-
patcher is also responsible for bridging other interfaces to
the accelerator side for the purpose of system integration.
OverGen-generated accelerators attach to the Network-on-
Chip (NoC) directly to coherently share a banked inclusive
L2 cache with other cores. The accelerator shares the page
table walker (PTW) of control-core for local TLB support.

The accelerator also uses D-cache to load its configuration
bitstream to re-program the computing substrate (Figure 9
right edge). Such reconfiguration bitstream reload is triggered
by a write to bitstream address and bitstream size registers
in stream register file. When this bitstream is returned from
D-cache, it passes through a customized network to perform
reconfiguration on the spatial computing network.

C. Stream Engine Microarchitecture

Our goal is to design a modular stream engine generator
that works for the combinations of supported stream patterns
(1D/2D/3D × Affine/Indirect × DMA/Scratchpad). Each
feature can be turned off individually to save resources if
not needed in a given domain. Figure 10 shows the micro-
architecture and pipeline design for stream engines.

Overview of Common Stages: The first stage, Stream
Issue, is where the stream table receives decoded stream
entries from the stream dispatcher. The stream table selects
one stream entry to be sent to the Stream Request stage

(b) Stream Table w/ One-hot Bypass

(a) Stream Table w/o One-hot Bypass

strX.Y: The Y-th issue of stream entry at position X of table

Bubble

Bubble

Issue stopped due to 
backpressure or ports not ready

Figure 11: Stream Table One-hot Bypass

for every cycle, together with its data payload (e.g. write
data, indirect index value).

The Stream Request will generate the memory re-
quest packet based on the elaborated stream entry. After
accessing memory blocks or obtaining the expected value at
the Stream Generation stage, the responses (only for
memory read or recurrence) will be forwarded to a Re-order
Buffer (only for DMA and indirect scratchpad), where the
responses are re-ordered in request order. The responses will
eventually be sent to its destination input ports and eventually
consumed by In Port(s).

Stream Issue: After being dispatched, the stream entry first
arrives at the stream table, where the meta information for
each stream are recorded. The stream table aggregates the
readiness across all valid streams and selects one to be issued
to the stream request generator. The readiness of each stream
is determined by whether any associated input ports have
enough space (read stream) and output ports have enough
data to consume (write stream).

The stream table is designed to be fully pipelined. The
difficult case is when there is only one active stream. Since
the stream table needs to hold the outstanding meta info
for each stream, it is designed to be flip-flop based. Thus,
the updated stream entry can only be reflected in the next
cycle and issued in the subsequent cycle, creating a pipeline
bubble. To fully-pipeline a single stream, a one-hot detector
is added beside the stream table, where if only one stream
is active, the stream table will be bypassed by the updated
stream entry from the stream request stage. Figure 11(a)
shows the bubble in the waveform without the bypass, where
the issue rate is one every two cycles. Figure 11(b) shows
that adding the bypass doubles the issue rate.

Stream Request: After being issued from the stream
table, stream entries will be converted to memory request
packets (address, mask, read/write, etc.) in the Stream
Request stage. For affine stream patterns, the task of the
request generator is to generate a memory access bitmask
based on the address and number of bytes to be accessed,



described in TileLink protocol [63]; As for indirect stream
patterns, an indirect request generator containing a set of
adders is introduced. Such adders are used to add the start
address of stream a with its multiple index values (values
of stream b) to calculate the actual addresses of indirect
streams like a[b[i]]. The Stream Request stage is
also responsible for calculating the next-cycle stream state
that will be written back to the stream table for the next
request (or bypassed when there is only one stream).

Stream Generation: The Stream Issue and Stream
Request stages create continuous requests that will even-
tually produce data that will be consumed by the computing
fabric in the Stream Generation stage, which is specific
to each stream engine.

DMA accesses virtual memory, where memory requests
from Stream Request will 1. reserve an entry in the
ROB; 2. access a private TLB and PTW shared with the
control-core; 3. Memory request interface connects directly
to NoC, which allows accelerator access to L2 cache (LLC)
directly; 4. Memory response will be sent to ROB to complete
the memory transaction.

Other units are intuitive: The Generate Engine generates
affine value sequences, similar to the patterns supported by
affine memory streams. The Recurrence Engine forwards
write data payload from output ports directly to input ports.
The Register Engine enables scalar value collection from an
output port to control-core directly.

D. OverGen Implementation

Specific design constraints should be followed to maximize
the FPGA resource utilization (for larger or more accelerators)
and minimize the critical path (for higher frequency). Besides
resource constraints, FPGA requires careful consideration on
timing since Configurable Logic Blocks (CLB) are pre-placed
and clock sources are pre-defined. Bad implementations (e.g.
large combinational logics) or complex designs (e.g. multi-
clock region) can significantly hurt the frequency. Therefore,
OverGen follows two design principles to attempt to solve
these two challenges:

1) Conservatively design and add extra pipeline stages
while maintaining fully-pipelined execution.

2) Build each module by using pre-built FPGA IP for
higher frequency and better utilization.

Conservative pipeline: One challenge is the added delay of
cross-die interconnects on the latest FPGAs [65]. These are
present on Xilinx FPGAs, which use multiple dies connected
by silicon interposers in order to increase the number of
logic elements on a single device. In addition, specialized IP
blocks such as the DRAM controllers or HBM controllers
have fixed locations, and interacting modules are also more
constrained in their layout. Together, these factors lower the
final clock frequency.

To mitigate the timing degradation caused by die-crossing
delays, we conservatively insert additional pipelines. We
explicitly add extra stages between the stream dispatcher and
all stream engines to relax the timing budget on the stream
dispatch bus. Moreover, the DMA engine is responsible for
main memory access, which requires it to closely interact
with the NoC and then the DRAM controller. The fixed-
location of the DRAM channel on the FPGA encourages
per-tile DMA engines to be placed near the DRAM controller,
as shown in Figure 12, so we also add extra pipeline stages
inside DMA read/write ports that connect to the NoC. The
stream engines are also conservatively pipelined, as shown
in Figure 10, because they bridge other accelerator pieces:
stream dispatcher, in/out ports, and compute fabric.

FPGA IP Optimization: We adapt the overlay design to
make use of the specialized memory and DSP blocks available
on the FPGA fabric. For example, using the Block RAM
hard blocks for scratchpad and ROB. Also, mapping floating
point computation to dedicated DSPs significantly increases
the achievable frequency compared to mapping with LUTs.

E. Limitations & Future works

Threading Interface: The current pthread-like programming
interface assumes a one-to-one mapping of threads to tiles,
where threads run to completion uninterrupted. Also, the
performance models assume that all tiles are parallelizing
the same code region, and this is our convention when
implementing kernels. We also do not manage the interaction
between host and FPGA in terms of offloading or data
movement. A more sophisticated programming interface,
task model (e.g. [66–69]), and analytical models could
significantly expand usability.

Processing Elements: Our current implementation of process-
ing elements only supports a dedicated instruction execution
model; in contrast, the use of shared PEs (either static [70,71]
or dynamically scheduled [56,72,73]) can potentially support
kernels with larger code regions and get higher utilization
for kernels with more complex control flow.

Compilation Support: Although our processing elements
already support a predication-based control lookup table for
conditional execution, our compiler has only limited support
for converting arbitrary control flow to predication based
dataflow execution. A more general dataflow control flow
model (e.g. [74,75]) is future work. Meanwhile, our compiler
only supports data parallel loop unrolling when exploring
DFG resource occupation (i.e. DFG size). When it comes to
exploiting overlapping data reuse between subsequent loop
iterations, we still require manual unrolling to take advantage.
This can be improved by integrating prior work on reuse
distance analysis [76]. Also, our reuse analysis relies on
strong assumptions on compilation-time determined loop trip
count and array shape. One of our future directions is to
support dynamical array shape and loops.



Workload Size Type #ivp #ovp #arr #m,a,d
D

SP

cholesky 482 f64 7 3 2 5,4,2
fft 212 f32x2 3 1 2 4,8,0
fir 210 ×199 f64 4 2 2 4,4,0
solver 482 f64 4 2 2 4,4,1
mm 323 f64 4 3 3 4,4,0

M
ac

hS
ui

te stencil-3d 343 ×8 i64 7 1 2 4,12,0
crs 494×4 f64 6 5 6 1,0
gemm 642 i64 4 2 3 8,8,0
stencil-2d 662 ×32 i64 3 1 2 9,11,0
ellpack 494×4 f64 4 3 4 4,4,0

V
is

io
n

channel-ext 1282×4 i16 1 1 2 0,0,0
bgr2grey 1282×4 i16 3 1 2 16,32,4
blur 1282×4 i16 3 1 2 0,52,8
accumulate 1282×4 i16 2 1 2 0,16,0
acc-sqr 1282×4 i16 2 1 2 16,16,0
vecmax 1282×4 i16 2 1 3 0,16,0
acc-weight 1282×4 i16 5 1 2 32,16,4
convert-bit 1282×4 i16 3 1 2 0,32,0
derivative 1302×4 i16 3 1 2 16,32,4

Table II: Workload specification: size, data type, input/out-
put ports, and multiply, add, div ops in the best DFG.

VII. METHODOLOGY

Benchmarks: We selected 19 workloads from different
domains: 9 from Xilinx Vitis computer vision library, 5
from the digital signal processing (DSP) domain targeted
by REVEL [56], and 5 from MachSuite [77] for commonly-
accelerated workloads. The data size and data type are shown
in Table II.

Baseline: We evaluate OverGen in terms of speedup, compi-
lation, DSE time and device reprogram time. We compare
against the state-of-the-art HLS technology, AutoDSE [21], as
our baseline by using Merlin Compiler (2020.3) and Xilinx
Vivado (2020.2). Because AutoDSE benefits significantly
from manual kernel tuning, we evaluate both against non-
tuned and tuned code versions for AutoDSE.

Compiler support: We augment the open-source
DSAGEN [38] compiler with spatial memory support.
An extended Clang and LLVM compiler transform the
pragma-annotated program into RISC-V assembly, and the
RISC-V GNU toolchain is modified for binary generation.

Hardware Generation & Verification: OverGen augments
the Chisel-based DSAGEN hardware generator [38] by ex-
tending it to full system-level with a modular spatial memory
system as described in Section IV. After obtaining RTL
from hardware generation, we further verify the functional
completeness as a full system with RISC-V binaries on RTL
cycle-level by using Synopsys VCS before FPGA verification.

System-Level Integration & Experiment Platform: Each
accelerator is integrated into ChipYard [36] as an RoCC
accelerator to a small RISC-V Core (Rocket Core). All
designs use an 8-way associative directory-based inclusive L2.
The generated RTL is further synthesized to Xilinx VCU118
Evaluation board by using Vivado 2021.2. All data for each
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Figure 12: Quad-Core OverGen FPGA Floorplan

kernel begin offchip and are loaded from FPGA DRAM.
Because of FPGA implementation difficulties, we were not

able to run on our FPGA when multiple DRAM channels
were enabled. Thus, we use a single DRAM channel for
most experiments, and study the effect of multiple DRAM
channels separately using VCS RTL simulation (Eval. Q7).

Figure 12 shows the floorplan of a Quad-tile General Over-
Gen design at 92.87MHz, including the DRAM controller’s
location. The critical path is around the L2 MSHR logic, and
optimizing is beyond the scope of this work.

VIII. EVALUATION

The goal of our evaluation is to provide perspective on the
opportunities of synthesized spatial overlays as compared to
state-of-the-art automated HLS (AutoDSE). This section is
organized around 8 key questions, with the takeaways being:

• OverGen is able to generate reconfigurable designs
that can outperform baseline AutoDSE (without kernel
tuning) by mean 1.2×, even though the generated
designs are more flexible.

• HLS benefits more heavily from kernel tuning, while
OverGen’s execution model and compiler can handle
many code patterns natively without software effort.

• New applications within the same domain can be easily
deployed on an existing overlay with only modest
performance degradation, due to overlay flexibility.

Q1: How performant are generated overlays?
Figure 13 shows the overall performance of OverGen

across all workloads, normalized to AutoDSE without kernel
tuning. We demonstrate three different kinds of overlays:

• General Overlay (second bar): A single hand-designed
mesh-based accelerator overlay targeting all workloads
with maximum vectorization width (512 bit).

• Suite Overlay (third bar): An overlay specialized to
each workload suite. Table III shows the specs of each.

• Workload Overlay (fourth bar): An overlay specialized
only to a single workload.

We first compare against AutoDSE without manual kernel
tuning. The general overlay achieves comparable performance
to AutoDSE on the DSP suite and MachSuite, and mean
68% of the performance on vision suite. This is because
it can only fit at most 4 general tiles, due to the high
overhead of the general overlay’s datapath and FUs (about
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Figure 13: Overall Performance Comparison
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Spec. Mach. Vitis DSP General

Sy
st

em Tile Count 10 13 7 4
L2 #Bank 16 16 8 4
NoC B/W (Byte) 64 64 64 32

A
cc

el
er

at
or

PEs 20 16 10 24
Switches 17 11 27 35
Avg. Radix 2.9 2.61 2.85 4.69
Int +/×/÷ 16/14/0 16/15/13 0/0/0 24/24/24
Flt. +/×/÷/

√
x 4/4/0/0 0/0/0/0 6/6/5/2 24/24/24/24

Spad. Cap. (KB) 64 - 8, 32 32
Spad. B/W (B/cyc) 32 - 32, 32 32
Spad. Indirect? Yes - No, No Yes
GEN/REC/REG 0/0/0 0/0/0 0/1/0 1/1/1
In Ports B/W (B) 160 112 152 224
Out Ports B/W (B) 96 48 104 160

Table III: Specification of Suite Specific Overlays

52% in LUT). The per-suite specialized overlays outperform
baseline AutoDSE by a mean 1.2×, primarily due to having
2-3× more tiles (i.e. due to specialized network, FUs,
and memories). Additionally, the DSP overlay uses two
scratchpads to increase bandwidth without requiring more
expensive wider accelerator datapaths. The per-workload
specialized designs can outperform AutoDSE without kernel
tuning by mean 1.45× for similar reasons; the relative
improvement over suite-specialized is modest, especially
for Vitis, due to the strong similarity between workloads.

Compared to AutoDSE with manual kernel tuning, Over-
Gen is able to achieve 0.71×, 0.37×, 0.65× of performance
for DSP, Machsuite and Vision respectively, while still
maintaining workload-flexibility. This is sensible, as hardware
structures for preserving generality and programmability
reduce the maximum resource efficiency; Q2 goes into depth
on why kernel tuning is more critical for AutoDSE.

While most suite overlays were at least half the perfor-
mance of the AutoDSE designs, there were a few outliers.
Both stencil-2d and derivative both apply aggres-
sive reuse optimization through a sliding window, which can
be well specialized by line buffer architecture on HLS [78].
For ellpack, we have to load a vector to the scratchpads
of all cores, but we currently lack broadcast support from
DRAM to scratchpad, which wastes significant bandwidth;
incorporating stream-based multicast [79] would be helpful.

Q2: Impact of kernel tuning across frameworks?
We studied 9 workloads that benefit from kernel tuning, as

shown in Figure 14. There are 7 workloads where AutoDSE
(and its underlying HLS technology) does not handle some
code patterns well, leading to lower performance because of
increased initiation interval (II: number of cycles between
pipeline compute instances). In general, these patterns are
more easily supported on OverGen’s ISA/compiler. To
substantiate this, we manually transform these 7 workloads to
improve their II for AutoDSE, and we found 4 opportunities
for kernel tuning in OverGen.

AutoDSE Kernel Tuning: We find that two main manual
transformations are useful in these workloads: eliminating
variable loop trip counts, and strength reduction for strided
access patterns. Table IV shows the II’s before and after
these transformations, and the hatched bar in Figure 13 and
Figure 14 shows the tuned workloads’ performance. Note
that all other workloads achieve II=1, and OverGen always
achieves II=1. We next discuss each transformation and the
affected workloads.

Causes Var. Loop TC Inefficient Strided Access

Workload chol. crs fft bgr2. blur chan. stcl-3d

Untuned II 10 4 2 9 6 8 6
Tuned II 5 2 1 1 1 1 1

Table IV: HLS Initiation Interval (II) Optimization

Variable Loop Trip Count: HLS prefers a perfect loop nest
with fixed trip-count [78], but cholesky, fft, and crs
all have variable trip counts or imperfect loop bodies. To
transform these programs, we replace variable trip counts with
a fixed maximum, and push outer-loop computation into the
inner loop. We then guard the conditional execution with if-
statements within the inner loop. OverGen supports variable
trip-count streams natively (using REVEL’s ISA [56]).

Inefficient Strided Access: AutoDSE’s toolchain has trouble
efficiently performing strided memory access with small
strides (including accesses that appear strided when observing
only the innermost dimension of the access pattern). Such
patterns can limit AutoDSE’s ability to exploit memory
parallelism, either at the BRAM level with multiple ports,



or at the DRAM level with memory request coalescing. To
help the underlying HLS tools understand the access pattern
better, the solution is to perform a strength reduction on any
strided accesses using the innermost induction variable (e.g.
instead of using i * 4, increment i by 4 in each iteration).
OverGen’s compiler natively supports strided streams and
coalescing adjacent streams.

Prebuilt Database: AutoDSE has a pre-built database
that records the best explorer configuration of AutoDSE for
common workloads. gemm is optimized using this database.

OverGen Kernel Tuning: These software behaviors of
interest are more easily captured by the OverGen compiler,
so only 4 workloads benefit from source code transformation
on OverGen. For fft, we peel the last several iterations, so
that strided scalar access can be coalesced to fully utilize
the memory bandwidth [38,57]. For gemm, to minimize I/O
traffic into the accelerator and improve reuse, we unroll across
two inner-loop dimensions (similar to tensorization [80]). For
stencil-2d and blur, our compiler has limited support
for exploiting reuse from overlapped data access between
subsequent iterations. Therefore, we manually unrolled the
iterations to reuse the overlapped data.

Overall, while kernel tuning is a helpful avenue for perfor-
mance improvement in AutoDSE’s HLS-based approach, it
also more often requires programmer effort to get competitive
performance than OverGen for this set of workloads.

Q3: How fast is OverGen’s DSE?
Figure 15 shows the DSE and synthesis time comparison

between AutoDSE (first bars in each suite) and the suite-
wise OverGen overlay (right-most hatched bar). Comparing
AutoDSE’s combined time of synthesizing each application,
our DSE constructs a more general accelerator while using
only 47% of the time.
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Figure 15: DSE and synthesis time comparison.

Q4: What are the limiting FPGA resources?
Figure 16 shows the resource breakdown of each com-

ponent, normalized by the total FPGA resources available
for both overlay and AutoDSE designs (with kernel tuning).
All the generated overlay designs (both per-workload and
suite) consume from 81% to 97% of LUTs, which is the
limiting factor. Because we would like to preserve some
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Figure 16: FPGA Resource Breakdown

generality for potential future workloads, our DSE greedily
consumes as many resources as possible, even if there is no
parallelism or when we are memory bandwidth bound. One
of the biggest components in terms of LUTs is the NoC, due
to its crossbar-based implementation (prior work observed
similar overheads [42]). AutoDSE tends to consume fewer
resources as it favors utilizing less hardware when memory
bound or parallelism bound, as generality is not a goal.

Q5: Can additional workloads be mapped to an overlay?
We perform a “leave-one-out” experiment to study the

overlay flexibility. Specifically, we generate an overlay for all
but one workload in a suite, then try to map the remaining
workload. If that workload can map with relatively high
performance, that indicates a more robust design.

The results are shown for MachSuite in Figure 17. Most of
the workloads can be mapped to the corresponding leave-one-
out accelerator, with mean 49.5% performance degradation.
Performance loss is caused by datapath specialization, which
prevents the optimal spatial mapping; generally, a less-
vectorized version is used, which has commensurately less
performance. The modest performance loss may be acceptable
to an FPGA programmer making incremental changes. We
imagine that the compiler could inform the user when a
significant performance improvement is expected, to signal
when to perform DSE again.

We use the same setup to evaluate the compile/reconfigu-
ration time, as compilation time is most meaningful on an
overlay that was not specifically designed for that workload.
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Figure 17: “Leave-one-out” Flexibility Evaluation

Comparing against AutoDSE-based HLS, our spatial overlay
compilation is 10000× faster. Also, reconfiguration is much
faster by mean 54000×. This is useful if the desired FPGA
functionality changes rapidly, enabling efficient temporal
multiplexing at very fine time scales.

Q6: How does overlay-generality affect performance?
OverGen can be used to generate increasingly general

designs by incrementally adding more target workloads.
Figure 18 shows the results of such an experiment, where we
incrementally add workloads and rerun the DSE to analyze
how the number of tiles and resource usage changes. We
witness the overall datapath (PE + Port + network) use per
tile increases as new workloads are added to the target set,
because the datapath becomes more general. To compensate,
the number of tiles decreases from 15 to 10. Because some
of the workloads are memory bound, it only costs mean 8%
performance to support all workloads in this suite.
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Figure 18: Incremental Design Optimization.

Q7: How do more DRAM channels affect performance?
Figure 19 shows the performance with varying DRAM

channel count, normalized to single-channel DRAM for
each design. For AutoDSE, most MachSuite kernels can
benefit from multiple DRAMs by mean 25%. Element-
wise memory-intensive workloads like mm, gemm3, vecm.,
accu., acc_sqr, acc_wei and deri. can also benefit

3gemm is a tiled (blocked) implementation of matrix multiply, mm is not
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Figure 19: Effects of DRAM channels

from multiple DRAM channels. The OverGen Workload
Overlays see benefits on a similar set of workloads by mean
19%.

Q8: Do schedule-preserving transforms improve DSE?
Figure 20 compares the DSE algorithm with and without

schedule-preserving transformations. Here the x-axis is time
in hours, and the y-axis is the DSE’s estimated IPC for the
whole FPGA. Schedule-preserving transformations help the
DSE converge faster to designs that are more-specialized
to the workload datapath topologies. Overall, DSE time is
reduced by mean 15%, and the estimated IPC is improved
by 1.09× (running on the FPGA confirms 1.08x speedup).

0 10 20

60

80

100

120

140

Es
tim

at
ed

 IP
C

DSE
Time (h)

dsp

0 5 10
40

60

80

100

120

machsuite

0 10 20
40

50

60

70

80
vision

non-preserved
preserved

Figure 20: The effects of schedule-preserving transforms.

IX. RELATED WORK

Overlay Architectures: We highlight significant and recent
overlay approaches; Li et al. provide an in-depth survey [81].

Soft CPU: FPGA vendors provide soft processor imple-
mentations, e.g. Xilinx MicroBlaze [82] and Intel Nios II [83],
and there are also many open source works, e.g. SPREE [84],
iDEA [85,86], and OpenRISC [87]. Some alternatives provide
higher-performance microarchitectures, such as multi-issue
(e.g. Leon3 [88], FPGA-Nehalem [26]), multi-thread (e.g. Oc-
tavo [24], CUSTARD [89], MT-MB [90]), multicore with
scalable networks (e.g. Heracles [23], Kumar et al. [91]),
vector operations (e.g. SIMD-Octavo [92], MXP [25]), as
well as VLIW (e.g. TILT [93]).

Soft GPGPU: FlexGrip [30] and MIAOW [94] are single
compute-unit (CU) overlays based on Nvidia and AMD GPU
architectures, respectively. FGPU [28] was able to synthesize
multiple CUs on a single FPGA board, with a follow-up
work specialized for persistent deep learning [35].



Reconfigurable Architectures: QUKU [95] is an early
example of a 2D-mesh style CGRA overlay. reMORPH
is another 2D mesh-based overlay that is built around the
FPGA’s DSP blocks as primitives [31]. VDR [96] is a
CGRA overlay which can map short program traces for JIT-
based compilation. The DySER heterogeneous core/CGRA
architecture was also mapped to FPGA [97,98]. ZUMA is
an example of an FPGA-on-FPGA overlay [99].

Customizable Overlays: Interestingly, some overlays allow
architecture customization. For example, CREMA [100,101]
and Quickdough [102,103] leverage templates to customize
PEs for each application and speedup the design process.
CGRA-ME [104–107] and AHA [44,45,108] further in-
troduced architecture description languages for arbitrary
topologies and DSE with CGRA mapper involvement. Mo-
carabe [109] introduces the communication cost as a first-
class citizen in the compiler to obtain a design with high
frequency while still meeting the targeted II. SCRATCH [29]
is a GPU-based overlay based on MIAOW [94], which
automatically identifies the application-specific demands
regarding the instruction set and computing unit capability,
and generates a trimmed down GPU design.

Key Difference to prior Overlays: As compared to these
prior frameworks, our overlay-synthesis approach attempts to
perform application specialization automatically and across
many aspects of the overlay architecture (instructions/topolo-
gy/execution model/provisioning).

FPGA Programming: While the overlay approach improves
the programmability by providing another layer of abstraction,
there are also efforts to directly tackle this problem with
new programming languages with lower-level abstractions.
As an example, Dahila [110] generates predictable HLS
designs by incorporating time-sensitive affine types into
the language. On the other hand, Reticle [111] proposes
an intermediate representation and low-level assembly that
explicitly expresses special resources on FPGAs, e.g. LUTs
and DSPs. Spatial [112] is a language designed for imple-
menting accelerators based on parallel patterns. Although
these techniques improve the programmability, they do not
tackle reconfiguration overheads. Just-in-time compilation
frameworks can also reduce the burden of FPGA synthe-
sis [113,114].

A recent approach integrates separate compilation into
an FPGA design flow to enable better usability [115,116].
These works leverage faster compilation/reconfiguration to
subregions of the FPGA, and enable linking through a packet-
switched network. The RapidStream framework [117–119]
also partitions a large design for parallel implementation and
final re-assembly, but instead uses customized point-to-point
and pipelined channels to address the high area and limited
bandwidth of packet-switched NoC’s in prior work.

X. CONCLUSION

While FPGAs have proven to be extremely effective
computational accelerators, their usability is not ideal. The
heart of the problem is the limited design space of existing
HLS tools, which is inflexible and requires frequent re-
synthesis. In this work, we develop and evaluate the idea of an
alternate HLS paradigm where a highly-flexible overlay is the
target architecture. Surprisingly, even though the generated
designs are programmable, the overall performance is on-par
with state-of-the-art HLS tools.

Yet there is much more to be explored, and OverGen should
be seen as a proof-of-concept for the potential of multicore
spatial overlays. Many aspects of the design space can be
further specialized to the chosen applications, leveraging the
extreme flexibility of FPGAs. Examples include the NoC
topology [120], NoC protocol [121,122], cache policies [123],
coherence protocol [124], and synchronization [125] to
name a few. One broad, underexplored aspect is hetero-
geneity: including heterogeneous cores, caches, networks,
and memories. While our current framework assumes pure
single-program parallelization, real systems (e.g. mobile
SoCs [126], datacenters, VR [127] and even brain computer
interfaces [128]) often require heterogeneous mixes of
workloads with different throughput and latency requirements
on the same fabric — this opens up vast potential for these
different forms of architecture and microarchitecture hetero-
geneity. Supporting heterogeneity is challenging both because
it adds another dimension to design-space exploration, and
because it requires novel system support in virtualization and
runtime management of heterogeneous resources.

Overall, we see spatial overlay synthesis as a potentially
disruptive approach for FPGA HLS, and OverGen as spring-
board for future spatial architecture research.
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