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Abstract—Spatial accelerators provide high performance, energy efficiency, and flexibility.
Recent design frameworks enable these architectures to be quickly designed and customized to
a domain. However, constructing a compiler for this immense design space is challenging, first
because accelerators express programs with high-level idioms that are difficult to recognize.
Second, it is unpredictable whether certain transformations are beneficial or will lead to
infeasible hardware mappings. Our work develops a general spatial-accelerator compiler with
two key ideas. First, we propose an approach to recognize and represent useful dataflow idioms,
along with a novel idiomatic memory representation. Second, we propose the principle of
modular compilation, which combines hardware-aware transformation selection and an iterative
approach to handle uncertainty. Our compiler achieves 2.3× speedup, and 98.7×
area-normalized speedup over high-end server CPU.



Introduction
Moore’s law has driven the advancement of

general-purpose processors for decades, but the
once exponential gains are waning. Reconfig-
urable spatial accelerators (e.g. CGRA’s, recon-
figurable dataflow processors, systolic arrays) are
promising due to their flexibility and order-of-
magnitude performance and energy efficiency.
Several recent design frameworks enable spa-
tial accelerators to be specified as a compo-
sition of simple primitives [3], [7], [14], [1],
[12]. This approach allows programmers to target
many domain-customized programmable acceler-
ators with a unified software framework.

However, a significant obstacle remains: how
to design a compiler that is robust to arbi-
trary hardware feature combinations that might
be present in any given accelerator instance?
The large gap between high-level language and
idiomatic accelerator interfaces compounds the
problem.

There are two key challenges that form the
basis of our novel approach:
Idiomatic Dataflow: For efficiency, accelerators
use idiomatic ISA’s, which encode coarse-grain,
stateful patterns of program behavior for memory,
control, and parallelism (e.g. a 2D memory access
pattern). A generalized compiler must be able to
recognize corresponding idioms from a general
high-level representation.

Our work develops a novel dataflow-based in-
termediate representation (IR) which can explic-
itly express commonly accelerated idioms. We
then develop a series of compiler transformations
to identify and optimize for important memory
and control idioms.
Modular Compilation: Any sufficiently com-
plex accelerator design space will contain many
combinations of features that imply different
preferred sets of compiler transformations – ei-
ther because a certain transformation hurts the
performance, or makes a compilation infeasible
to hardware. There are many combinations of
transformations, especially when multiple code
regions compete for resources.

To address this, we develop a modular com-
pilation approach. The basic principle is to start
with the most aggressive feasible set of transfor-
mations, and iteratively relax the transformations
based on the compiler-estimated performance re-

duction.
This work’s contribution is to further develop

several aspects spatial accelerator compilers:

• Recognizing a set of primitive program be-
haviors, idioms, which benefit from hardware
specialization and exposure in an accelerator
ISA.

• Building a structured intermediate representa-
tion to record these behaviors and ease further
optimization and code generation.

• Proposing a systematic way to determine the
optimal set of compilation transformations for
an accelerator with modular features.

Implementation and Key Results:
Our compiler is integrated into the DSAGEN

framework [14]. By extending Clang/LLVM, we
build a C+pragma compilation flow for spatial
architectures. According to our evaluation, our
compiler robustly targets accelerators specialized
for 3 different domains, achieving 2.3× speedup
and 98.7× area-normalized speedup, comparing
with a single core of AMD EPYC 7702P. The
compiler, simulator, RTL generator, and bench-
mark implementations are available at https://
github.com/polyarch/dsa-framework.

This article first discusses the spatial architec-
ture design space, followed by an explanation of
our novel compilation approaches, before com-
piler evaluation and related work discussion.

Spatial Accelerator Design Space
A Decoupled-Spatial Execution Model

Our target accelerator paradigm is
“decoupled-spatial”. Decoupled indicates how
computation and memory operations are executed
on different specialized hardware components.
Spatial indicates how the low-level details of the
execution (e.g. instruction placement, operand
routing) are exposed in the ISA.

In this model, programs are represented as
a decoupled dataflow graph (DFG). Figure 1(a)
and (b) show an example DFG with “stream”
nodes (e.g. a[0:n]) to represent coarse-grain
memory patterns, while other nodes represent
computation. Figure 1(b) also shows an example
of the mapping to an accelerator, composed of
scratchpad memory, a compute substrate, and
port-based interface. We next elaborate on each
aspect of the execution model.

https://github.com/polyarch/dsa-framework
https://github.com/polyarch/dsa-framework


for (i=0; i<n; ++i)
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  state.1d-end = (j==(l1d-1))
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Figure 1: Mapping dot product onto decoupled-
spatial paradigm, highlighting idiomatic hard-
ware/ISA features.

Idiomatic Memory Representation Common
memory access patterns are represented as first-

class primitives in the ISA for lean and high-
throughput memory request generation pipelines
(called stream engines).

Figure 1(b) shows that memory accesses are
represented in coarse-grain streams and executed
on the stream engine. The streams communicate
with computational instructions through “ports”,
named FIFO’s that enable coordinated dataflow
firing of computation inputs. This coordination is
required for supporting statically-scheduled com-
ponents. Streams for different ports are defined
to be concurrent (unless there is an intervening
fence, explained later).

Besides data, the encoded streams can also
communicate their loop state to compute instruc-
tions, which indicates the beginning/end of loop
dimensions, and can be useful for control flow
(explain later).

Compute Substrate: Spatial Dataflow Instruc-
tions are mapped to processing elements (PEs),
and the dependences are routed by a network of
switches (small circles in Figure 1(b)). Logically,
instructions will be fired when their inputs have
arrived.

Besides computation, each PE can optionally
have a control lookup table. This table is indexed
either by least significant bits of the instruc-
tion output or additional input, and determines
whether to reuse one of the inputs, discard an out-
put, or reset an accumulator. In Figure 1(b)&(c),
the stream state is used as the control lookup
key for both resetting the accumulator on loop
termination, and discarding intermediate values
before then.

Control Core: Program phases are coordinated
by the control core. Figure 1(d.1) shows the con-
trol commands issued by the control core, includ-
ing loading configuration bits, memory streams
encoded in ISA, and a fence. Fence instructions
synchronize with the accelerator at the bound-
ary of program phases. Streams after the fence
are stalled until all prior streams are completed.
Figure 1(d.2&3) concretely shows how memory
streams are encoded and executed.

Control commands are executed within a typ-
ical Von Neumann program so that program as-
pects which are not accelerator-friendly can be
handled by the lightweight control core.
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Figure 2: An overview of the compiler.

Design Space
There are three key aspects to the design

space, which would be determined either through
manual design or by a design-space exploration
(DSE) algorithm [14]: the parameters, topology,
and capabilities.
Parameters Parameters are the tunable aspects of
the hardware, like scratchpad size or PE register
count. These could impact the performance/area
tradeoffs, and can affect whether an optimized
program can legally map to hardware.
Topology This defines the set of components in
the accelerator (PEs, memories, ports, network
switches) and their connectivity. The topology is
a key factor in determining both the maximum
performance and the generality; for example, a
mesh-based network would be more flexible than
an application specific network.
Capabilities Capabilities define optional id-
iomatic functionality exposed in the ISA. Instan-
tiating expensive features only when necessary is
helpful to limit the hardware cost. We discuss
three important capabilities:

Linear vs Indirect Memory Access: The mem-
ory stream engine can be specialized for ei-
ther linear (e.g. a[i*n+j]) or indirect (e.g
a[b[i]]) memory access. Supporting parallel
indirect memory access requires significant pow-
er/area to manage bank conflicts and reorder
requests [4].

Dynamic vs Static Scheduling: In static
scheduling, the order and cycle-level timing of
PE’s and routers is defined statically by the
compiler, whereas in dynamic scheduling the
execution is triggered by data arrival. Dynamic
scheduling requires more power/area, and static
scheduling saves power/area at the expense of
flexibility.

Dedicated vs Shared Execution: Dedicated
components only support one instruction (or
route), whereas shared components are tempo-
rally multiplexed. For a given number of PE’s
(i.e. maximum throughput), dedicated compo-
nents have lower power/area overhead, whereas
shared components enable mapping larger and
more complex program regions.
Architecture Description Graph (ADG) The
ADG combines topology, capabilities, and pa-
rameters into a unified, graph representation that
defines the accelerator ISA. It includes nodes for
PE’s, switches, memories/address generators, and
ports for synchronization. The ADG is not only
a hardware specification for RTL generation, but
also a capability abstraction to the compiler.

Compiler Overview
Figure 2 shows an overview of the compiler.

The programming interface is pragma-annotated
C for aiding alias analysis. The annotated code
is analyzed and transformed into a decoupled
dataflow intermediate representation (IR): The
computational instructions are represented in a
dependence graph, and the memory operations are
analyzed and represented in an idiomatic memory
tree (IMT) form. The compiler will iteratively
explore the combination of transformations for
the best software/hardware affinity. Finally, the
compiler performs code generation on the se-
lected transformations and removes accelerator-
mapped instructions from the control program.

We next briefly highlight key aspects of the
compiler.
Pragma Annotation We rely on two pragmas to
aid compilation, as shown with a simple example:
#pragma dsa config
{



#pragma dsa decouple
for (i = 0; i < n; ++i)

for (j = 0; j < n; ++j)
c[i * n + j] = a[i * n + j] * b[j];

}

#pragma dsa config This defines the set
of concurrent program regions (loop nests and
compound statements) on the spatial architecture.
#pragma dsa decouple This indicates all
memory accesses under this loop level are “re-
stricted”, i.e. no address intersection among ar-
rays with different pointers. This completely
avoids enforcing load-store ordering explicitly,
expensive for dataflow architectures.
Dataflow Decoupling This pass decouples com-
putation and memory access within the scope of
config pragma and builds a decoupled dataflow
IR for idiomatic analysis and transformation. Us-
ing slicing [8], operands that are transitively de-
pendent on address operands of memory instruc-
tions are considered part of address generation,
and remaining instructions are computation. The
pointer expressions of the memory instructions
will be fed to idiomatic memory analysis for
aiding stream ISA encoding, while the compu-
tation is represented in dataflow form for spatial
accelerator mapping. Private arrays with a known
size are considered to map to scratchpad.
Transformation Space Exploration To deter-
mine the optimal set of transformations – termed
a transformation point – our compiler first deter-
mines all the tunable dimensions of the transfor-
mation space based on the IR and ADG, including
the possible unrolling degrees and the profitable
idioms. Then our compiler tries mapping different
transformation points to hardware through spatial
mapping, which will determine its feasibility and
predicted performance. We iterate over the trans-
formation points in order of decreasing expected
performance, so that we can break early and avoid
unnecessary and expensive spatial scheduling it-
erations.
Spatial Mapping Spatial mapping is respon-
sible for mapping instructions and memory
streams onto hardware units, routing dependences
onto the network, and matching the timing of
operand arrival for statically-scheduled compo-
nents (either by path lengthening or using delay
FIFO’s [10]). We adopt a stochastic search algo-
rithm [10], [9].
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Figure 3: An example of analyzing memory ac-
cess pattern and control command generation.

Idiomatic Transformation
The compiler for an idiomatic ISA must find

the best-suited idiom that is applicable to a pro-
gram region. Here, we explain a set of broadly
applicable idiom transformations for memory ac-
cess and computation.



Decoupled Memory Access
Expressing memory in terms of predefined

coarse grain idioms — i.e. streams — has many
benefits, including better-utilizing memory band-
width and reducing control instructions and core-
accelerator communication. To aid mapping/op-
timization on streams, we develop the idiomatic
memory tree (IMT).
Idiomatic Memory Tree Prior works on pro-
gram idiom analysis under loops, like chain of
recurrence (CR)1[6], mainly focus on analyzing
the expressions of loop variables and invariants,
and have limited support on memory-dependent
expressions.

To store and analyze the idiomatic memory
behaviors in a structured way, our insight is that
complicated program behaviors can be composed
by a set of simple primitive idioms. To explain,
Figure 3(c) shows a complicated graph traversal
example. This program behavior is composed of
an affine pattern in the inner loop and an indirect
pattern in the outer loop. Next, we introduce IMT
nodes that capture primitive behaviors.
LinearCombine Figure 3(a) shows an example of
linear memory accesses. Dashed boxes annotate
the sub-expressions that can be analyzed by CR.
By walking through these expression nodes, we
can extract the coefficient of each loop variable
and represent the pointer expression, a[i*n+j],
in a linear combination format:∑

k

ik × coefk + base

BinaryOp Figure 3(b) shows a pointer expression
(a[b[i]]) without loop variable directly in-
volved in the operands, which cannot be analyzed
by CR. Thus, we use a BinaryOp node to wrap
this node and recursively analyze both operands.
Load Continuing with the example shown in
Figure 3(b), a memory load is involved on the
rhs operand, which indicates an indirect memory
operation. We wrap the memory load with a
Load node, and recursively analyze the pointer
expression of this memory load. In this case, the
load pointer can be handled by CR, and yields a
LinearCombine node.

The IMT is useful for generic optimizations
(explained next) and to choose the right set of
idioms for code generation.

1Our implementation uses LLVM’s ScalarEvolution for CR.

for (i=0; i<n; i+=2) {
  access a[i+0]
  access a[i+1] }
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for (i=0; i<n || j<m; ) {
  c[k++] = min(a[i], b[j]);
  cond = a[i] < b[j];
  i+=cond;
  j+=!cond;
}
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Figure 4: Generic program idioms

Fusing Stream Idioms Because memory requests
are issued at line granularity, stride-access wastes
bandwidth. We address this through two transfor-
mations:

Stream Coalescing Figure 4(a) shows if we
generate streams for a[i] and a[i+1] sepa-
rately, these two streams will request each cache-



line twice. Streams which have the same coef-
ficients, and where the base differs by one, are
coalesced by appending a new dimension (see
purple box, Figure 4(a)).

Dimension Fusion Continuing with Fig-
ure 4(b), after appending a new dimension, two
1-d streams become a 2-d stream with two con-
tinuous dimensions. Therefore, our compiler will
fuse subsequent stream dimensions when their
outer dimension’s coefficient equals the coeffi-
cient times the trip count of the inner loop.

In the code generation phase, our com-
piler matches the analyzed and optimized IMT
on idiomatic ISA to fill in parameters. A
LinearCombine node indicates affine mem-
ory access, so it encodes as many as possible
linear dimensions supported on the hardware. A
BinaryOp node with a Load involved indicates
an indirect memory access, so the compiler ex-
tracts the

Computational Idioms
Accumulator Accumulation manifests as a loop
carried dependence that involves itself — see
Figure 4(c). To specialize for this idiom, the
intermediate accumulated results can be stored
implicitly in the instruction (later allocated to
a PE register), and the data output/accumulator-
reset is controlled by a stream state metadata of
an operand stream.
Data Padding As shown in Figure 4(d), the
trip count of the innermost dimension can be
indivisible by the unrolling degree, which nor-
mally requires loop peeling for the final iterations.
Our compiler specializes for idiom by generat-
ing memory streams with different padding flags
according to their consumers. For elementwise
operations, stream data is padded to fill with
invalid data to predicate off the unused datapath.
For accumulator operations, stream data is padded
with zeros to avoid adding extra control/muxing.
Meta-reuse Figure 4(e) describes an algorithm
for merging two lists, by repeatedly increasing
the iterator of the smaller value. To specialize for
this, input elements elements are popped/reused
according to the result of comparison. This short-
ens the dependence chain on control, but causes
data-dependent consumption rate on the spatial
architecture; thus, dynamic-scheduled hardware
elements are required.

C
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A Bfor (i=0; i<n || j<m; ) {
  c[k++] = min(a[i], b[j]);
  cond = a[i] < b[j];
  i+=cond;
  j+=!cond;
}

(b) Meta-reuse

Conditional pointer move; mapped 
to dynamic-timing spatial datapath.

for (i=0; i<n || j<m; ) {
  c[k++] = min(a[i], b[j]);
  cond = a[i] < b[j];
  i+=cond;
  j+=!cond;
}

(b) Meta-reuse

Conditional pointer move; mapped 
to dynamic-timing spatial datapath.
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Figure 5: Modular transformations with fallbacks.

Modular Compilation
To stay robust across accelerators, we use

modular transformations with fallbacks for each
idiom and develop an exploration algorithm to
quickly converge to the optimal set of transfor-
mations.

Modular Transformations with Fallbacks
Fallback transformations (shadowed regions

in Figure 5) either uses less resources or non-
idiomatic hardware features. Here, we give four
examples:
High Allocation→Low allocation Executing
more loop iterations simultaneously is faster but
requires more resources. Thus, a knob to resource
allocation is the unrolling degree, as shown in
Figure 5(a).
Meta-reuse→Host Execution Meta-reuse con-
trol requires dynamic PEs/switches which are
more expensive. A fallback is to execute related
instructions on the control core: the comparison,



the green arrows, and the memory streams a[i]
and b[i].
Temporal PEs→Dedicated PEs/Host Execu-
tion Figure 5(c) shows that norm computation is
out of the loop body and involves two expensive
operations. Offloading instructions with lower
execution frequency to dedicated PEs leads to
low resource utilization, so these instructions are
favored to go to temporally shared PEs. If shared
PEs are not available, the compiler first falls back
to dedicated PEs if enough are available, then
falls back to the control core.
Indirect Memory→Scalar Memory A mem-
ory operation pointer expression involves another
memory operation indicates an indirect mem-
ory access. Accelerators without indirect-memory
specialization require a fallback transformation:
The compiler will perform indirect accesses as a
series of scalar accesses (single element stream);
this requires an order-of-magnitude more core/ac-
celerator communication. Figure 5(d) shows the
different generated stream commands depending
on whether indirect memory is available.

Transformation Space Exploration
As aforementioned, idioms and modular fea-

tures are dimensions of a transformation space.
When it comes to multiple loops and program
behaviors of interest, the transformation space
grows exponentially. Meanwhile, invoking the
spatial scheduling algorithm is expensive, making
it difficult to try every possibility. Therefore, we
adopt a somewhat-greedy search algorithm. The
basic steps are:

1) The compiler first determines all the ex-
plorable dimensions for each concurrently
mapped program region, according to rele-
vant transformations and the hardware ca-
pability in the ADG.

2) For each region and dimension, the com-
piler “relaxes” it (e.g. reduce the unrolling
degree of one of the loops, or disable indi-
rect memory encoding), and then estimate
the performance reduction caused by the
relaxation based on the expected ILP and
memory bandwidth of any streams.

3) The transformation with the least perfor-
mance reduction is applied, and the trans-
formed IR is fed to the spatial scheduler

for hardware mapping. If it fails, eliminate
the transformation point and go to step 2;
else, the the feasible transformation point is
returned.

Because this algorithm enumerates transfor-
mation points in a roughly decreasing order of the
ideal performance, the first successful mapping is
likely to have the best performance. In addition,
we also adopt a region-balance strategy to prune
this space — resource allocations where a low
execution frequency code region has a higher
resource allocation than a higher-frequency code
region will be skipped.

Methodology
Software Stack: The compiler is implemented by
extending the Clang frontend for pragma parsing,
and LLVM for ISA extension and IR transforma-
tion.
Benchmarks We select 9 from MachSuite, 9
from Xilinx Vitis, and 5 DSP workloads, each
with their own prevalent program idioms. The
data type, size, and computation intensity of each
is shown in Table 1.
Hardware Setup We choose the AMD EPYC
7702P as our CPU baseline. All the benchmarks
run on this are compiled by gcc -O3.

Accelerators are generated with
DSAGEN [14]. The accelerator controller
is a single-issue RISCV core with extended
ISA. Both the AMD CPU and the accelerator
have the same L1/L2 cache size (32KB, 512KB)
and bandwidth (64B/cycle). The AMD CPU
has nearly 24GB/s DRAM bandwidth, and the
accelerator has 20GB/s memory bandwidth.

We start with a general accelerator with full
specialized features and the spatial architecture is
5×5 (16 dedicated multiplier PE’s, 8 dedicated
adder PE’s, one temporally shared PE with full
arithmetic capability) mesh-topology.

We then use DSAGEN to auto-generate accel-
erator targets for each benchmark suite with three
different degrees of specialization.

• Capability Specialization (Cap) indicates the
architecture adopts all the specialized features
required and a generic mesh topology. Both
floating point and integer functional units are
included.



Workloads crs/ellpack gemm nw stcl-2d stcl-3d viterbi merge radix

Size 496×4 643 1282 342 343 140×64 2048 2048
DType f64 i64 i64 i64 i64 f64 i64 i64
Op/DRAM 0.16 4 0.13 1.99 1.14 0.1 0.5 0.06
Feat. Ind. Mem Basic Basic Basic Basic Basic Dyn. Timing Ind. Mem

Specialization Cap. +FU +Topo

A
re

a
(m

m
2) FU 0.15 0.11 0.08

SW 0.03 0.02 0.02
Port 0.03 0.03 0.02
Spad 0.12 0.12 0.12
Total 0.36 0.31 0.27

(a) MachSuite

Workloads acc acc-sqr acc-wei grey blur cha-ext conb drvt vecmax

Size 1282×4
DType i16
Op/DRAM 0.16 0.33 0.66 0.4 0.5 n/a 0.5 0.5 0.16
Feat. Basic

Specialization Cap. +FU +Topo

A
re

a
(m

m
2) FU 0.15 0.05 0.05

SW 0.02 0.02 0.02
Port 0.03 0.02 0.02
Spad 0.04 0.04 0.00
Total 0.28 0.18 0.13

(b) Vitis

Workloads chol fft mm qr solver

Size 482 2048 323 482 482
DType f64 f32x2 f64 f64 f64
Op/DRAM 3.07 6.8 1.33 4.08 0.24
Feat. Shared PE Basic Basic Shared PE Basic

Specialization Cap. +FU +Topo

A
re

a
(m

m
2) FU 0.15 0.08 0.07

SW 0.03 0.02 0.02
Port 0.02 0.02 0.02
Spad 0.04 0.04 0.04
Total 0.29 0.20 0.19

(c) DSP

Table 1: Benchmark specification and generated hardware characteristics.

• FU Specialization (+FU) indicates the unused
functional units will be trimmed off.

• Topology Specialization (+Topo.) indicates the
topology (the connectivity of hardware com-
ponents) is specialized to the applications.

The bottom of Table 1 shows the area break-
down of these accelerators. All these numbers are
synthesized by Synopsys DC @28nm.
Simulation We develop a cycle-level simulator
for performance estimation, by integrating a spa-
tial architecture simulator to a gem5 single-issue
core.

Evaluation
We evaluate the compiler’s performance and

robustness. The key takeaways are:

• Our compiler achieves 2.2×, 3.3×, and 1.3×
speedup on the three workload suites, Mach-
Suite, Vitis, and DSP, respectively.

• The generated binaries reduce dynamic RISCV
instructions by mean 99.8% on the control
core.

• Our compiler allows graceful performance
degradation when compiling to accelerators
with different degrees of specialization.

Idiomatic Transformation: Figure 6a shows
the performance of each workload on the general

initial accelerator when incrementally enabling
optimizations. It achieves mean 2.3× speedup
and 98.7× area-normalized speedup over the
CPU.

Base is the code generation without any id-
iomatic optimization, which just transforms the
program into decoupled dataflow and maps the
decoupled aspects to specialized units, e.g. linear
memory access to stream engine.

Generic refers to the stream coalescing
and dimension fusion optimization. gemm, nw,
stcl-2d, stcl-3d, grey, blur, and fft
all have adjacent scalar access in the innermost
loop body, thus benefiting from stream coalescing
and dimension fusion. The performance of these
7 workloads is improved by mean 1.8× compared
with base optimizations.

Temporal means offloading instructions
to temporally shared processing elements.
cholesky and qr both have code regions with
more than one instruction outside the loop nest.
Offloading these to shared PE’s enables higher
ILP and avoids control core serialization. Thus,
their speedup is improved by mean 1.2×.

Dynamic supports the capability of condition-
ally popping data. Only merge benefits from
dynamic capabilities; falling back to control in-
structions on the single issue control-core would
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Figure 6: Performance and specialization study

cost 8.6× speedup.
Indirect enables parallel indirect memory ac-

cess, and radix, crs, and ellpack all benefit
by 11.5× speedup over feeding indirect access
data one-by-one to the accelerator.
Speedup Implication: To study the source of
speed up, we demonstrate the dynamic instruction
reduction and the cycle breakdown. By compiling
the original C codes to RISCV and simulating
on gem5, we count the dynamic instructions.
Figure 6c shows that 66% of the dynamic in-
structions are removed, and 99.8% of RISCV
instructions are eliminated.

The instructions are in four categories: com-
putation, memory, other, and dsa control. The
“memory” and “other” category constitute the
biggest savings, because of the stream encoded
memory. For simplicity, we compare here against

a non-vectorized RISCV baseline, but idiomatic
memory streams can coalesce multiple memory
operations into one request; “other” instructions
mainly include pointer expression and loop con-
trol: these can be expressed by encoded streams to
reduce instruction count by orders-of-magnitude.

Moreover, Figure 6b shows that besides com-
putation, memory bandwidth is the second largest
portion of the execution time, which indicates that
speedups are mainly from high ILP enabled by
the decoupled-spatial execution.

An outlier is merge sort, which not only has
1.3× dynamic instructions, but is also bounded
by control instructions. Our current idioms can
only capture the inner loop of merge sort. A loop
nest with affine outer loop and data-dependent
inner loop is not supported, and is a candidate
for broadening the idioms.
Robustness over Specialization: We demon-
strate the compiler’s robustness on accelerators



for three domains with different degrees of spe-
cialization.

Figure 6d shows the relative perf/mm2 nor-
malized by the capability-specialized accelerator.
Our compiler can robustly target architectures
with different feature combinations while exploit-
ing the hardware/software affinity. Performance is
retained on the designs specialized for the target
domain. Topology-specialized have reduced area
at the expense of performance on non-targeted
domains.

Related Work
Idiomatic ISAs Prior idiomatic ISA
constructs include streams [11] and
streams+vectorization [5]. Prior idiomatic
spatial architecture ISA’s include database [13]
and sparse processing primitives [4].
Accelerator Compilers Prior works devel-
oped general-purpose compilers for accelerators.
DySER’s compiler [8] developed a dataflow rep-
resentation (AEPDG) which separates memory
and computation. SARA [16] parallelizes sequen-
tial programs across spatial accelerator tiles. Par-
allelXL’s compiler [2] targets general-purpose dy-
namic task scheduling. However, these compilers
are for an accelerator with fixed capabilities.
Spatial Architecture Design FAST [15] incorpo-
rates loop reorganization into the DSE for ML-
accelerators. CGRA-ME [3] and SNAFU [7] are
CGRA generation frameworks that are flexible
across topologies and resource allocation. RE-
VAMP [1] and AURORA [12] have automated
DSE for spatial architecture parameters (but not
topology or capabilities).
High-Level Synthesis Vivado HLS also adopts a
C+pragma programming interface, bit its pragmas
are more complex. The key difference is that HLS
generates a fixed hardware design for a single
application.

Our modular compilation approach enables
robustness across a significantly larger design
space of programmable architectures, including
different topologies and parameters.

Conclusion
This work identifies and takes on two critical

problems of the accelerator era: How to com-
pile for increasingly complex accelerator ISA’s,
and how to create a generalized compiler across

a wide design space of accelerator capabilities
and resource allocations. Idiomatic datfalow IR
and transformations, combined with their modu-
lar application, will be key to supporting robust
compilation in future accelerator design frame-
works. We envision that this capability can en-
able automated exploration of accelerator general-
ity versus specialization for highly-heterogeneous
accelerator-rich architectures.
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