
PIMSAB: A Processing-In-Memory System with
Spatially-Aware Communication and Bit-Serial-Aware
Computation

SIYUAN MA, Department of Electrical and Computer Engineering, The University of Texas at Austin,

Austin, United States

KAUSTUBH MHATRE, Arizona State University, Tempe, United States

JIAN WENG, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

BAGUS HANINDHITO, The University of Texas at Austin, Austin, United States

ZHENGRONG WANG, University of California, Los Angeles, Los Angeles, United States

TONY NOWATZKI, University of California, Los Angeles, Los Angeles, United States

LIZY JOHN, The University of Texas at Austin, Austin, United States

AMAN ARORA, Arizona State University, Tempe, United States

Bit-serial Processing-In-Memory (PIM) is an attractive paradigm for accelerator architectures, for parallel

workloads such as Deep Learning (DL), because of its capability to achieve massive data parallelism at a low

area overhead and provide orders-of-magnitude data movement savings by moving computational resources

closer to the data. While many PIM architectures have been proposed, improvements are needed in commu-

nicating intermediate results to consumer kernels, for communication between tiles at scale, for reduction

operations, and for efficiently performing bit-serial operations with constants. We present PIMSAB, a scal-

able architecture that provides a spatially aware communication network for efficient intra-tile and inter-tile

data movement and provides efficient computation support for generally inefficient bit-serial compute pat-

terns. Our architecture consists of a massive hierarchical array of compute-enabled SRAMs (CRAMs), which

is codesigned with a compiler to achieve high utilization. The key novelties of our architecture are (1) in

providing efficient support for spatially aware communication by providing local H-tree network for reduc-

tions, by adding explicit hardware for shuffling operands, and by deploying systolic broadcasting, as well

as (2) by taking advantage of the divisible nature of bit-serial computations through adaptive precision and

efficient handling of constant operations. These innovations are integrated into a tensor expressions-based

programming framework (including a compiler for easy programmability) that enables simple programmer

control of optimizations for mapping programs into massively parallel binaries for millions of PIM processing

elements. When compared against a similarly provisioned modern Tensor Core GPU (NVIDIA A100), across

common DL kernels and end-to-end DL networks (Resnet18 and BERT), PIMSAB outperforms the GPU by

Authors’ Contact Information: Siyuan Ma, Department of Electrical and Computer Engineering, The University of Texas

at Austin, Austin, Texas, United States; e-mail: siyuan.ma@utexas.edu; Kaustubh Mhatre, Arizona State University, Tempe,

Arizona, United States; e-mail: kmhatre@asu.edu; Jian Weng, King Abdullah University of Science and Technology, Thuwal,

Saudi Arabia; e-mail: jian.weng@kaust.edu.sa; Bagus Hanindhito, The University of Texas at Austin, Austin, Texas, United

States; e-mail: hanindhito@bagus.my.id; Zhengrong Wang, University of California, Los Angeles, Los Angeles, California,

United States; e-mail: seanzw@ucla.edu; Tony Nowatzki, University of California, Los Angeles, Los Angeles, California,

United States; e-mail: tjn@cs.ucla.edu; Lizy John, The University of Texas at Austin, Austin, Texas, United States; e-mail:

ljohn@ece.utexas.edu; Aman Arora, Arizona State University, Tempe, Arizona, United States; e-mail: aman.kbm@asu.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 1544-3973/2024/11-ART91

https://doi.org/10.1145/3690824

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

HTTPS://ORCID.ORG/0009-0008-0425-3335
HTTPS://ORCID.ORG/0009-0006-1256-1528
HTTPS://ORCID.ORG/0000-0002-7933-9941
HTTPS://ORCID.ORG/0000-0002-8485-581X
HTTPS://ORCID.ORG/0000-0003-2366-4267
HTTPS://ORCID.ORG/0000-0001-8483-3824
HTTPS://ORCID.ORG/0000-0002-8747-5214
HTTPS://ORCID.ORG/0000-0003-2547-4424
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3690824
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3690824&domain=pdf&date_stamp=2024-11-20

91:2 S. Ma et. al

4.80×, and reduces energy by 3.76×. We compare PIMSAB with similarly provisioned state-of-the-art SRAM

PIM (Duality Cache) and DRAM PIM (SIMDRAM), and observe a speedup of 3.7× and 3.88×, respectively.

CCS Concepts: • Hardware → Memory and dense storage; • Computer systems organization → Other

architectures;

Additional Key Words and Phrases: Processing-in-memory, bit-serial computing, accelerators, compilers, ma-

chine learning

ACM Reference Format:

Siyuan Ma, Kaustubh Mhatre, Jian Weng, Bagus Hanindhito, Zhengrong Wang, Tony Nowatzki, Lizy John,

and Aman Arora. 2024. PIMSAB: A Processing-In-Memory System with Spatially-Aware Communication and

Bit-Serial-Aware Computation. ACM Trans. Arch. Code Optim. 21, 4, Article 91 (November 2024), 27 pages.

https://doi.org/10.1145/3690824

1 Introduction

Bit-serial Processing-In-Memory (PIM) is a promising accelerator paradigm [11, 14, 21, 22, 29]

with both high compute density and abundant on-chip memory capacity, especially considering

the recent surge in demands on computing power and memory bandwidth in multiple application

domains, including but not limited to deep learning, image processing, and signal processing. The

essential principle of this paradigm is to integrate a single-bit processing element (PE) at the

output of the sense amplifier under each bitline of a memory array so that massive data parallelism

can be exploited over a transposed data layout.

This technology provides compute density that is competitive with the state-of-the-art GPUs.

The theoretical throughput of a PIM system based on prior technologies [5, 11] is in the range

of 310-340 GOPS/mm2 for int8 precision, for the same area and DRAM bandwidth as that of an

NVIDIA A100 GPU. The GPU has a much lower vector throughput of 24 GOPS/mm2, but has a

higher throughput of 755 GOPS/mm2 for Tensor Cores. However, Tensor Cores can only achieve

high utilization for specific kernels and parameters. In addition, bit-serial PIM supports arbitrary

precision, which can be extremely beneficial for saving memory bandwidth and increasing com-

pute throughput. The paradigm keeps data near compute units to avoid data movement overhead

and thwart the memory wall [44]. Overall, bit-serial PIM is a promising paradigm that has com-

petitive compute density without needing specialized units like Tensor Cores and can be a path-

forward for DL workloads.

State-of-the-art PIM systems [14, 18] have showcased improved performance compared to previ-

ous generation GPUs. To make PIM systems outperform the state-of-the-art GPUs, we need to fully

unlock the potential of the PIM paradigm by taking a system-level approach - co-optimizing hard-

ware and software. Hardware should be carefully architected, given the area budget, to optimize

computation and communication. Prior works [11, 18] ignore the overhead in on-chip data commu-

nication, which is significant without hardware specialization for common data access behaviors.

Similarly, the software can be tuned to make better use of the underlying hardware. Prior works

[14, 18, 34] do not enable the software to take advantage of the hardware’s bit-serial nature to per-

form optimized data allocation and computation. Also, though some prior works claim to have a

full-stack implementation [14], their programming interfaces are rather low-level. These low-level

interfaces limit the productivity of both application development and performance tuning. Further-

more, other PIM systems are either cache-based or DRAM-based requiring new system-level exe-

cution models. Such limitations of existing PIM systems motivate us to build a PIM accelerator with

easy programmability that can outperform state-of-the-art GPUs and contemporary PIM systems

by incorporating multiple novel features that optimize both computation and communication.

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

https://doi.org/10.1145/3690824

PIMSAB 91:3

Our goal is to build a Processing-In-Memory (PIM) system—ISA, microarchitecture

and compiler—that can exceed the performance and energy efficiency of similarly provi-

sioned GPUs and prior PIM systems, with a focus on DL workloads. There are two key

principles that form the basis of our proposed design: (1) We optimize on-chip com-

munications to be spatially-aware: H-tree interconnect topology for faster reductions at

lower level of hierarchy & dynamic routing at higher level of hierarchy for scalability,

explicit hardware for shuffling (multicasting and broadcasting) operands for common data pat-

terns in DL workloads, and systolic broadcasting; (2) We optimize bit-serial computations that

are common in PIM architectures: memory allocation and cycles required can expand/shrink dy-

namically based on precision requirements (adaptive precision) and bit level sparsity can be ex-

ploited using constant operations saving space and time. Operations such as reductions, constant

multiplication, multicasting, broadcasting are common in workloads like DL.

Our overall system is a hierarchical and spatial PIM accelerator, abbreviated as PIMSAB. PIMSAB

uses a hierarchical structure, where each tile is composed of many SRAM arrays capable of bit-

serial PIM, along with an instruction controller that broadcasts commands to SRAM arrays in its

tile. The ISA enables efficient expression of mixed scalar/vector program regions. The intra-tile

network is simple and static for low overhead, and uses an H-tree topology [6] to facilitate high-

bandwidth reduction. At the inter-tile level, tiles communicate explicitly, and routing is done over

a dynamically routed network to enable flexible parallelization strategies. Further, a mesh-based

topology enables scalability to arbitrary sizes. PIMSAB’s programming interface is based on the

TVM tensor DSL [9], which can be used to express a wide range of applications, including linear

algebra, neural networks, and stencil processing. With moderate hints from the developers, the

compiler can easily generate portable and high-performance code, by partitioning work across

millions of PEs and balancing buffer occupancy and data parallelism.

Our evaluation shows that with sufficient co-design, PIMSAB can rival and surpass state-of-

the-art GPUs as well as prior PIM systems. Specifically, we achieve 4.80× speedup over NVIDIA

A100, while having 3.76× energy improvement for the same area and the same memory bandwidth.

We also observe a speedup of 3.7× with similarly provisioned state-of-the-art SRAM PIM (Duality

Cache), and a speedup of 3.88×with similarly provisioned state-of-the-art DRAM PIM (SIMDRAM).

To sum up, the contributions are:

— A hierarchical and spatial PIM system with an ISA, a microarchitecture, a compiler and a

programming interface.

– A microarchitecture that deploys dual-ported SRAM arrays with configurable PEs for PIM,

without any modifications to the internal SRAM array, as opposed to some of the prior

works [11, 14].

– An ISA that exposes PIM-specific features of the hardware that can be utilized by the

compiler.

– A compiler that can automatically tune the parallelism and on-chip buffer allocation, with

moderate hints from the application developer.

– A user-friendly programming interface using TVM Tensor DSL.

— Employing techniques for spatially-aware communication (shuffle hardware, H-tree for ef-

ficient reduction, systolic broadcasting) and bit-serial-aware computation (constant opera-

tions, adaptive precision) for high performance.

— Demonstration of GPU-outperforming performance and energy efficiency across both DL

microbenchmarks and end-to-end Deep Neural Networks (DNNs).

— Comparison with SOTA SRAM and DRAM PIM systems, showing improved performance

for realistic benchmarks.

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

91:4 S. Ma et. al

Table 1. Single-Port Based vs Dual-Port Based SRAM PIM

Feature Single Port Based Dual Port Based

Activate two wordlines at the same time on one port Yes No

Requires extra voltage source Yes No

Requires extra row decoder Yes No

Requires modification to sense amps Yes No

Compute uses dual-port behavior No Yes

Generic/Flexible PE No Yes

Cross-RAM shift No Yes

Examples [1, 3, 11, 14] [5]

Fig. 1. Basics of bit-serial processing-in-memory. Fig. 2. Programming PIMSAB in tensor DSL.

2 Background

2.1 Bit-serial Processing-In-Memory in SRAMs

Bit-serial computing paradigm performs operations on data bit-by-bit instead of element-by-

element. This makes each operation take many cycles, but massive parallelism can be achieved

by utilizing simple 1-bit processing elements, enabling high throughput. Bit-serial Processing-In-

Memory combines bit-serial computing with Processing-In-Memory. Analog approaches to bit-

serial PIM [24, 27] require analog-to-digital and digital-to-analog converters, have high power

consumption, and are, therefore, not considered in this work. In digital approaches, 1-bit process-

ing elements (PE) are added to an SRAM block. To provide operands to the PEs, two methods are

used: (1) activating multiple wordlines at the same time on one port [1, 3, 11, 14], (2) using dual

ported RAMs to read two wordlines at the same time [5]. Table 1 compares various properties of the

compute capable SRAM blocks that use these two methods. We use the second method in PIMSAB

because this method is more robust and does not modify the memory array (e.g., modifications to

sense amplifiers, requiring extra voltage source, adding an extra row decoder).

Figure 1 shows the basic principle of bit-serial In every cycle, two wordlines containing a bit

of each operand are activated, the processing element performs the computation and the result

is written into a wordline. Operations such as addition, multiplication, and others, can be per-

formed by repeating this basic step over multiple cycles. We refer the reader to Neural Cache [11]

for a detailed description of the algorithms for various operations. Note that floating-point and

transcendental operations are also supported [14, 21]. processing in memory.

The challenges in prior PIM systems include (1) high on-chip communication overhead in mov-

ing partial results across the chip and in organizing the data in the right layout, especially in large

systems with thousands of RAMs, even though the off-chip memory traffic is reduced, and (2)

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

PIMSAB 91:5

Fig. 3. PIMSAB hardware architecture.

bit-serial compute takes a large number of cycles, especially when the precision expands because

compilers allocate number of bits based on traditional paradigms (e.g., int8 ∗ int8 − > int32) .

2.2 Tensor Domain-Specific Language (DSLs)

DSLs, like Halide [35], TVM [9], and Tensor Comprehensions [41], are developed to productively

write high-performance tensor programs. The idea is to decouple the algorithm and the perfor-

mance tuning controlled by loop re-organization. Consider the vector addition implementation in

Figure 2: Loop variables and tensors are first declared, then a vector addition is implemented in

an expression involving these declared variables. DSL allows us to tune the algorithm at an ab-

stract level orthogonally with the specific problem tiling and mapping for a specific hardware. By

tiling, ordering, and annotating the loops, the parallelism in the program can be mapped onto our

hardware hierarchies.

3 Overview

3.1 Hardware Organization

Figure 3 provides an overview of the hardware organization of PIMSAB. The PIMSAB hardware

deploys a large number of compute-enabled SRAMs (or CRAMs). Each CRAM is a dual-ported

SRAM modified to add multiple single-bit PEs. We base our CRAM design on CoMeFa [5], because

of its more practical design compared to Neural Cache [11]. We use their basic block to build a large

scalable network of CRAMs with several enhancements for both communication and computation,

allowing the PIM to operate efficiently at scale.

To communicate between the CRAMs, a statically scheduled network is chosen, since most

communication patterns are identifiable at compile time. We choose an H-Tree topology for this

network, because it is well suited for partial sum reduction, a common computation pattern in DL

and many modern applications. Statically scheduling the entire chip would put too much burden

on the compiler. So, we introduce another level of hierarchy: tiles. Tiles communicate using a

dynamically scheduled packet-switched NoC. We choose a 2D mesh topology for the NoC because

this enables scalability. The NoC is used to send and receive data across tiles and to/from DRAM.

Having parallelism at three levels of hierarchy—CRAM, tile, chip—enables PIMSAB to capture

different types of parallelism in highly data-parallel applications.

Each CRAM needs to be fed micro-ops to perform computation. An instruction controller de-

codes the instructions and provides micro-ops to the CRAMs every cycle. However, connecting an

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

91:6 S. Ma et. al

Fig. 4. System level architecture.

instruction controller to each CRAM would result in significant overhead. We reduce this overhead

by having one instruction controller in a tile, making CRAMs in each tile operate in a SIMD fashion.

The PIMSAB system defines three memory locations: main memory (DRAM), CRAMs and reg-

ister file. HBM (High Bandwidth Memory) DRAM is adopted to sustain the high bandwidth

required by massive parallelism. To simplify physical design, DRAM controllers are connected to

the routers at the edges of the NoC. For similar reasons, we connect all DRAM controllers to the

top edge of the mesh NoC. A register file is provided in each tile to store constants or scalars. We

assume a PCIe interface, both for loading instructions and for transferring data (like GPUs).

3.2 System Architecture

Figure 4 shows a system level diagram of PIMSAB interfaced with a host machine. PIMSAB is

an accelerator/device connected to the host via a PCIe interface, similar to a GPU. Instructions

and data are communicated over the PCIe link. We explain the system-level data flow of a vector

addition example as follows: 1 The two input vectors to be added are moved from host DRAM to

PIMSAB DRAM. 2 Instructions of a compiled vector addition program are streamed from the host

to instruction queues in PIMSAB. 3 The instructions are decoded by the instruction controllers

and executed within the tiles—computations happen in CRAMs using the PEs and communication

happens via on-chip networks. 4 During instruction execution, the input vectors are loaded into

CRAMs from the PIMSAB DRAM and the result vector is stored into the PIMSAB DRAM after

computation. The output vector is then transferred back to the host DRAM 5 . Any intermediate

synchronization between the host CPU and the device also happens via PCIe.

3.3 Enabling Scalable and Performant Processing-In-Memory

In this section, we present the innovations—for spatially-aware communication and for bit-serially-

aware computation—that make PIMSAB a scalable and performant PIM system. We provide a high-

level overview of these innovations here; details are provided in the upcoming sections.

Register File and Constant Operations. A frequent operation in applications such as DL is multiply-

ing a scalar (or a constant) with an array or vector operand. With the computation paradigm of

bit-serial PIM, we would have to replicate this scalar over multiple bitlines in the CRAM. A more

efficient way is to keep scalars outside the CRAM and perform what we call constant multiplication

(explained in Section 4.2). To store these scalar operands, we introduce a register file (RF) in each

tile. Additionally, this approach can enable exploiting bit-level sparsity in the constant operand

by skipping operations for zero-bits, leading to up to 2× speedup in operations like multiplication

and 4× speedup in operations like dot product. This feature is exposed to the compiler through

the ISA (mul_const instruction).

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

PIMSAB 91:7

Dedicated Shuffle Hardware. When data is loaded from the DRAM, it often needs to be broadcasted

or multicasted to various CRAMs in different patterns to avoid loading data multiple times or to

ensure high utilization of CRAMs in a tile. In addition to just loading data from DRAM, broadcast-

ing or multicasting is useful when data is transferred from one tile to another, or from one CRAM

to another, or from one bitline in a CRAM to other bitlines. We provide explicit hardware near

each CRAM to support this. Several multicast and broadcast patterns are supported, governed by

the requirements of common workloads such as GEMM.

Adaptive Precision. Since PIMSAB uses bit-serial operations, any precision is supported, including

floating point (for algorithms of operations using various precisions, we refer the reader to [11] and

[14]). In PIMSAB ISA, the precision for each operand can be specified separately. This capability

of specifying a custom precision at operand granularity enables using just the number of bits that

are required and allocating only the required number of wordlines. For example, when multiplying

numbers of precision 8 and 10, 18 wordlines can be allocated to store the result, instead of 32 bits

as in a normal CPU. Our compiler exploits this feature to pack as many operands as possible in

each bitline (enabling high reuse), even splitting portions of an operand across non-consecutive

wordlines, and saving wordlines while performing accumulations by directly adding to those that

already have partial results instead of allocating new wordlines.

Cross-CRAM Shift. Shifts are commonly used in operations like stencils, filters, and the like. Vector-

ization widths in PIM architectures can get really large (e.g., in PIMSAB, the vectorization width

for maximum utilization is 256*256). Supporting only intra-CRAM shifting (i.e., shifting data from

a bitline to the next within a CRAM using connections between PEs) limits the utility of the shift

operation to only a CRAM. To support shifting data from a bitline to the next across the whole vec-

torization width, we provide CRAM-to-CRAM shift connections within a tile. This gives PIMSAB

the ability to perform filters and stencils much more efficiently.

Systolic Broadcasting. Chip level communications, such as broadcast, are essential for workloads

such as convolutions, where weights need to be broadcasted to multiple tiles. However, naive

broadcast algorithms, like one-to-many transfers, can cause extreme network congestion and over-

heads. To optimize this, we support a near-neighbor systolic-like data transfer supported in hard-

ware and exposed to the compiler through the tile_bcast library function. This efficiently utilizes

the available NoC bandwidth and reduces congestion.

Transposing Data: An important feature of bit-serial PIM approaches is the requirement of storing

data in a transposed format in the PIM-enabled memory blocks. Transposing data can be challeng-

ing and can become a bottleneck in achieving high performance. For DL inference, weights can be

transposed prior to execution and stored in DRAM. However, this optimization cannot be applied

for inputs or activations. We tackle this challenge by adding dedicated transpose hardware in the

DRAM controllers used in PIMSAB. This hardware can be enabled or disabled as needed using

instructions.

Hierarchical Interconnect. A two-tiered interconnect is used in PIMSAB. A statically scheduled H-

tree interconnect topology at the lower (intra-tile) level is orchestrated internally by each tile’s

controller and a dynamically scheduled mesh interconnect topology at the higher (inter-tile) level

is distributively manipulated by dynamic data packets.

The lower level interconnect enables faster reductions due to H-tree topology and reduces area

overhead by simple switch designs. The higher level mesh interconnect reduces the compiler’s

burden to schedule communications and allows more flexible communication patterns. As a result,

combining those two levels increases the scalability of PIMSAB.

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

91:8 S. Ma et. al

4 Architecture

4.1 Instruction Set Architecture (ISA)

In this section, we elaborate the PIMSAB ISA, including Compute, Data Transfer and Synchroniza-

tion instructions.

Compute Instructions. Compute instructions support arithmetic and logical operations (add, mult,

or, and, xor, max, and min), operate on data in the CRAMs, and are vectorized across bitlines.

We also support inter-bitline instructions, like shifting data across bitlines (shift). Instructions to

reduce data within a CRAM (reduce_cram) and across the CRAMs in a tile (reduce_tile) are also

provided. We also provide an instruction, set_mask, which copies the data of wordline into the

mask latches in PEs, to enable predicating operations per bitline. Additionally, each instruction has

a field to specify what should be used for predication—the mask latch or the carry latch (Section 4.2

describes the PE architecture including the latches). Precision of each operand can be expressed in

the instruction through the pr* fields. Exposing precision through the ISA provides more control

to the programmer over the benefits of adaptive precision. In most cases, all compute instructions

are executed across all the CRAMs in tile, but we also provide a field (called size) to specify the

number of bitlines involved in the operation across the tile.

Operations with Scalars or Constants. For multiplication operation, a special instruction called

mul_const is provided where one operand is from the RF (scalar or constant), instead of being

replicated in the CRAM. This instruction skips zeros in the constant operand in the RF, reducing

the execution time.

Data Transfer Instrucfions. These instructions are used to move data between the DRAM, CRAMs,

the RF. Specifically, we support bidirectional data transfer between DRAM and CRAMs (load
and store), as well as DRAM and the RF (load_rf and store_rf). We support transferring data

between CRAMs within a tile (cram_tx_rx), and transferring data between tiles (tile_tx and

tile_rx). Such communication blocks the receiver until the data arrives. Broadcasting from one

tile to other tiles is supported by a library function called tile_bcast. Two modes of broadcasting

are supported—(1) one_to_many, in which one tile sends data to all receivers, and (2) systolic, in

which each tile receives data from one neighbor and passes it to another neighbor.

Data Shuffling Instructions. When loading data from DRAM into CRAMs, the shuffling can be en-

abled by using the load_shf instruction. The shf argument specifies the shuffling pattern and the

bcast bit specifies whether broadcast is enabled or not (see the Shuffle Logic subsection of Section

4.2 for details). Furthermore, we provide the capability to shuffle data that is already stored within

a CRAM, using the cram_local_shf instruction.

Synchronization Instructions. These instructions coordinate data transfers and computations

among tiles. Two synchronization instructions provided are signal and wait. signal sends a

message from a source CRAM to a destination CRAM and is non-blocking. A CRAM can wait for

a message (blocking) from a source CRAM using the wait instruction.

Transposing Data. In load and store instructions, besides the source address, destination address,

size and precision, there is an additional tr field specifying if the data is transposed or not. This

can be used when, e.g., an immediate/constant operand read from the main memory need not be

transposed.

Program Example. A simple elementwise vector multiplication is shown in Listing 1. The program

generates an instruction stream for all tiles in the chip (NUM_TILES). Two operand arrays, each

with elements of precision int8, are loaded from the main memory. vec_width is specified to be

the full width of a tile. Then a multiplication instruction is used to generate a result with precision

int6. The result is then stored back in the main memory.

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

PIMSAB 91:9

Table 2. Microarchitectural

Parameters of PIMSAB

Parameter Value

CRAM geometry 256×256

PEs per CRAM 256

CRAM size 8 KB

Mesh dimensions 12×10

DRAM bandwidth 12288 bits/clock

Clock frequency 1.5 GHz

Num tiles 120

Num CRAMs per tile 256

Total CRAMs 30720

RF size 32 32-bit regs

Tile-to-Tile bandwidth 1024 bits/clock

CRAM-to-CRAM bandwidth 256 bits/clock
Fig. 5. Processing element used in CRAMs.

int vec_width = NUM_CRAMS_IN_TILE * NUM_BITLINES_IN_CRAM ;
for (i = 1; i<NUM_TILES; i++) {

load tile_addr1 , dram_addr1 , vec_width , i8
load tile_addr2 , dram_addr2 , vec_width , i8
mult tile_addr3 , i16 , tile_addr2 , i8 , tile_addr1 , i8
store dram_addr3 , tile_addr3 , vec_width , i16 }

Listing 1. Simple program to add two arrays

4.2 Microarchitecture

Here we discuss PIMSAB’s microarchitecture. Table 2 provides a list of hardware parameters.

CRAMs. We employ dual-ported compute-enabled RAMs (called CRAMs) similar to CoMeFa [5].

A CRAM has two modes: compute and memory. In compute mode, a data word written into the

memory is treated as a micro-op. Each micro-op takes 1 cycle during which two wordlines are read

(one on each port), computation is performed in the PE, and the result is written into a wordline. In

memory mode, the CRAM behaves like normal RAM. CRAMs are grouped into tiles; all CRAMs in

a tile execute in lock-step in a SIMD fashion (except when executing CRAM-to-CRAM data transfer

or inter-CRAM intra-tile reduction). CRAMs in a tile are connected using the intra-tile network.

In addition, there is a single wire ring interconnect between all CRAMs in a tile to facilitate shift
instructions.

Processing Element (PE). PIMSAB adopts the PE architecture from CoMeFa [5], as shown in Figure

5. Each PE can perform any logical operation between two operands, using the TR mux. The TR

mux allows the PE to be more flexible, compared to [11]. With the addition of an XOR gate (X),

it can perform a 1-bit full adder operation. A carry latch (C) is used to store the carry-out, which

can be used as carry-in for the next timestep. The output of the TR mux can be stored in the mask

latch (M). Predication based on mask bits and carry bits is supported, through the predication mux

(P). There are as many PEs in a CRAM as many bitlines. The operation performed by the PE is

governed by the micro-op received by the CRAM from the instruction controller. The micro-op

bits are decoded in the CRAM’s sequencing logic and generate the various control signals present

in the PE. The write select muxes W1 and W2 select what to write back to the bitlines using the

write drivers - data from left or right PEs, or the sum or carry output calculated by this PE. In each

cycle, the PE receives two bits of operands from the sense amplifiers and performs the operation

specified by the micro-op. The result of the operation is then written back into the CRAM through

the write drivers (unless predicated off).

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

91:10 S. Ma et. al

Fig. 6. Structure of a switch in the intra-tile H-Tree network. Fig. 7. Structure of a router in

the inter-tile mesh network.

Instruction Controller. Instructions are received from the HOST over PCIe. Each tile has an instruc-

tion controller to decode and farm-out execution to corresponding units. For compute instructions

(add, multiply, reduction, etc.), it generates micro-ops for the CRAMs every cycle. For data transfer

instructions (CRAM-to-CRAM transfer, tile-to-tile transfer, DRAM transfers), it reads the CRAM

and sends data into the static network’s switches, and also writes data coming in from the switches

into the CRAMs.

Inter-Tile Dynamic Network. The inter-tile network uses a standard wormhole-switched dynamic

NoC, with X-Y routing. Each router, shown in Figure 7, has a crossbar connecting five input and

output ports—local tile, north, south, west, east. Routers connected to DRAM have an extra in-

put/output port to receive/send data from/to DRAM. The transferred data is broken into flits (flow

control units). Each input port has multiple circular queues to buffer input flits into multiple virtual

channels. Upon sending, header and data flits are pushed into a circular queue of the local tile port

one after another. Each router performs wormhole switching on the incoming flits. Upon decod-

ing the flit header, the router controller performs minimal routing to route incoming flits towards

their destination. Upon receiving, data flits are popped from one of the input queues selected by

the crossbar. Due to simple flow-control and routing strategy, small flit and queue sizes, area and

power overheads of routers are minimized.

We choose a mesh topology to connect the tiles as opposed to a ring topology. A mesh topology

helps in scalability and reduces the burden on the compiler. Section 7.7 shows the advantage of

mesh topology compared to the ring topology.

Intra-Tile Static Network. The intra-tile network is a static circuit-switched network using an H-

Tree topology. This is similar to a hierarchical FPGA [2, 39], but with a much smaller configuration

overhead because of the coarser granularity (word-level instead of bit-level). Figure 6 provides the

details of the microarchitecture of a switch in the intra-tile network. Each switch is a buffered

crossbar with five ingress (input) and egress (output) ports. Each output port can be driven by the

other four input ports—three from other directions at the same hierarchical level and the fourth

from the next level of hierarchy (shown using separate colors in the figure). There is one switch

at the top of the tile that interfaces with the NoC router of the inter-tile network. For a tile with

256 CRAMs, there are four levels of switches, for a total of 1 + 4 + 16 + 64 = 85 switches. The last

set of 64 switches are connected to 256 CRAMs. The intra-tile network reconfigures its switches

when a incoming data transfer instruction indicates new communication pattern.

Reductions can be performed on data within a single CRAM, using an algorithm similar to [11].

We refer to this as intra-CRAM reductions. This method requires iteratively shifting values across

bitlines and adding them. Moving bits to adjacent bitlines takes 1 cycle, but moving bits to a bitlines

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

PIMSAB 91:11

Fig. 8. Shuffle logic at input of each tile in PIMSAB.

N-bitlines away takes N cycles, because each bit has to be shifted cycle-by-cycle, based on the

connectivity across PEs provided in the CRAMs. The number of cycles consumed in the reduction

operation is linearly related to distance (in terms of bitlines). Furthermore, the number of bitlines

utilized reduces as the reduction operation progresses, and the result is available in the first bitline

of the CRAM.

The H-Tree topology in PIMSAB facilitates pairwise reduction across multiple CRAMs. We refer

to this as inter-CRAM (or intra-tile) reduction. Data to be reduced are transferred across pairs

of CRAMs through levels of the H-Tree and added at each level. Therefore, the reduction time

is logarithmically related to the number of CRAMs that the operand occupies. As a result, inter-

CRAM reduction is more efficient than intra-CRAM reduction and is prioritized by our compiler.

The number of utilized CRAMs in a tile reduces as the reduction operation progresses, and the

results are available in the first CRAM of each tile.

Shuffle Logic. Operations like GEMM and convolution can greatly benefit from custom data layout

patterns. For example, we may need a data element to be duplicated in each bitline or repeated

every four bitlines in a CRAM. These custom layout patterns can be achieved by data duplication

in the CRAM thereby avoiding unnecessary traffic from/to DRAM. We refer to this duplication of

data in various layouts as shuffling. We implement dedicated hardware in PIMSAB to enable effi-

cient shuffling of data. This hardware is implemented in two parts. The first part is implemented

at the input of each tile, by employing careful modifications to the structure of the top-level intra-

tile switch. This hardware provides the capability to broadcast data received at the top of the

tile to each CRAM in the tile. The second part is implemented at the input of each CRAM. Ad-

ditional multiplexing hardware is provided to enable common data patterns observed in the DL

benchmarks.

Figure 8 shows the modifications done to the top-level intra-tile switch to support shuffling. The

data coming from the NoC (skyblue circle) goes to all the ports as shown previously in Figure

6, but now an additional red multiplexer is added on each port. The first input of all the red

multiplexers is data bits 255:0. Thus, the lower significant 256 bits from 1,024 bits received at

the NoC router are broadcasted to all the four ports and flow through the intra-tile network of

switches to CRAMs. The second input of the red multiplexer is the normal path, through which

different set of bits received from the NoC router are sent downstream to the CRAMs through

the intra-tile network. The selection between these inputs is controlled by a broadcast enable bit.

If broadcast is enabled, all ports (and hence the CRAMs in the tile) receive the same 256 bits of

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

91:12 S. Ma et. al

Fig. 9. Shuffle logic at input of each CRAM in

PIMSAB.
Fig. 10. Transpose unit.

data. This broadcast enable is exposed to the compiler through a bcast argument in the load_shf
instruction.

Figure 9 illustrates the additional hardware designed to shuffle bits at the periphery of each CRAM.

This unit enables data shuffling in four distinct patterns. The source selector multiplexer, shown

in green, enables choosing between the data coming from the leaf level intra-tile switch, or the

output of the CRAM itself. The former is used when data originating from outside (either in DRAM

or another tile or another CRAM) is being written into the CRAM. Currently, we only support

shuffling data loaded from DRAM through the load_shf instruction. The latter is used when data

already present in a CRAM needs to be shuffled and written back to the same CRAM. This path

is supported through the cram_local_shf instruction. The shuffle pattern selector multiplexer,

shown in blue, allows selecting between four data patterns generated by shuffling the data bits of

the data output by the source selector. For instance, the first pattern duplicates the 0th bit 256 times,

while the fourth pattern duplicates bits 7:0 32 times. The functionality of this multiplexer is exposed

to the compiler through the shf argument in the load_shf and cram_local_shf instructions.

Eventually, a shuffle enable bit of orange multiplexer selects whether to enable shuffling or not, and

the resulting data is written into the CRAM. Shuffling is disabled if load_shf or cram_local_shf
instructions are not used.

DRAM Interface and Transpose Unit. All tiles in the top row of the mesh NoC are connected to

DRAM controllers. The data from DRAM must be transposed before storing into CRAMs, so that

bit-serial arithmetic can be performed. Results need to be untransposed when writing back. In

PIMSAB, transpose units are integrated within the DRAM controllers. This unit can be disabled if

not needed (through the tr field of the DRAM load/store instructions). Some common situations

where transpose is not required include loading the RF and reading/writing spilled data during

operations. Another example is for deep learning, where we enable this for input activations while

we disable it for weights, as weights can be stored pre-transposed in DRAM. We use the transpose

unit shown in Figure 10 similar to CoMeFa’s [5]. It employs a ping-pong FIFO. Data enters from one

side into the ping part in the non-transposed format. When full, transposed output is obtained by

reading bit slices of the loaded elements, while the pong part is filled with new data. When the pong

part is full, the roles are reversed and the process repeats. The bandwidth for each DRAM channel

in PIMSAB is 1024 bits per cycle. There are 32 transpose units for each DRAM channel. 32 bits can

be read from 1 transpose unit in 1 cycle. For the highest bandwidth achievable, the transpose unit

adds a latency of 32 cycles. Data of different precisions can be handled and transposed using the

transpose unit.

Register File and Operations with Constants or Scalars. Many applications, including DL, heavily

rely on constant operations like vector-scalar multiplication. Instead of replicating the constant

operand in all bitlines like Figure 11(a), PIMSAB holds the constant operand in a register file (RF)

present in every tile. Figure 11(b) shows the operation of the instruction mul_const. After the

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

PIMSAB 91:13

Fig. 11. Flow for constant operations.

instruction is decoded 1 , the instruction controller fetches the scalar operand from the RF 2 ,

and sends micro-ops to the CRAMs according to the bits of the constant that are set. When a bit of

the constant is zero, corresponding computations and micro-ops can be skipped 3 . Finally, the

CRAMs execute the u-ops to perform the computation 4 . Besides exploiting such bit-level spar-

sity, constant operations also save CRAM space and reduce data spilling to DRAM. The RF is flip-

flop-based and does not have any port restrictions. Any number of registers can be read and written

in each cycle. Instructions load_rf and store_rf are provided to load/store RF from/to DRAM.

5 Compiler

5.1 Overview

Programming Interface. We adopt a tensor DSL as our high-level interface, because of its portability

and ease of performance tuning. As shown in Figure 12(a), a matrix multiplication is implemented

in a tensor DSL, by declaring loops, and tensors, and describing the program behaviors in expres-

sions involving these declared variables. The loop organizations are the key to the performance

tuning in tensor programs, and can be easily explored by invoking several loop organization prim-

itives (e.g., split and reorder shown in Figure 13). The parallelism is naturally encoded in the

declared loops with different types, either data-parallel or reduction. These different loop types

may lead to different program behaviors when mapping loops to different hardware hierarchies.

Performance Tuning. Different implementations significantly affect the on-chip buffer occupancy,

memory traffic, on-chip network traffic, and parallelism distribution, and lead to different perfor-

mances. Considering the excessively large space of code organizations, we decide to leave loop

organization and data layout tunings to developers, so that the compiler can figure out the best

parallelism distribution and buffer allocation under such organization and layout.

To explain, consider the matrix multiplication example in Figure 12(a). Its imperative version in

Figure 12(a’) shows that the innermost reduction loop is hard to parallelize across bitlines special-

ized for vector parallelism. Thus, one important transformation is to place a data-parallel dimen-

sion in the inner loop. As shown in Figures 12(b) and 12(b’), the outermost dimension of tensor a
is tiled by 256, and reordered to the innermost for mapping to bitline PEs. Then, Figure 13 shows

that users are required to call the loop organization APIs to determine a code organization for the

compiler to distribute the parallelism and allocate CRAM memory buffers.

Compiler Analysis and Optimizations. After the data layout and loop organization are deter-

mined, the compiler analyzes the program. It distributes parallelism to hardware hierarchies, and

performs memory buffer allocation (Section 5.2). Then it performs CRAM data optimizations (Sec-

tion 5.3) that take advantage of the properties of bit-serial arithmetic to reduce on-chip memory

occupancy. Since the exploration space of parallelism distribution and memory buffer allocation is

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

91:14 S. Ma et. al

Fig. 12. Matrix-matrix multiplication implemented in tensor expression language and array packing.

Fig. 13. Reorganize the loops for parallelism distribution.

small, the compiler exhaustively evaluates each point, and adopts the one with the best objective.

As shown in Figure 14, the parallelism distribution affects the memory buffer allocation. If the

required buffer size exceeds the on-chip resources available, this exploration point is considered

invalid. To make more exploration points more likely to succeed, CRAM data optimizations will

squeeze the buffer size requirement.

Code Generation and Feedback Loop. After the favored parallelism distribution and buffer allocation

is successfully determined on the given loop organization, the compiler extracts all the computa-

tional instructions to be offloaded to PIM and rewrites them in hardware intrinsics. Then, the

transformed IR is ready for code generation. If all the parallelism distribution fails under the given

loop organization, the compiler will throw an error to the developer, and the developer is required

to find another more conservative loop organization.

5.2 Parallelism Distribution & Memory Allocation

Parallelism distribution determines how much of these loops should be tiled and parallelized across

hardware hierarchies, and how much should be executed in serial. Since the parallel degree of each

hierarchy is at an order of hundreds, the loop tiling space is small enough for the compiler to search

exhaustively. Next, we explain how the loops are mapped to parallelism across and within tiles.

Inter-Tile Parallelism Distribution. Data communication between tiles (which happens using dy-

namically routed NoC) is expensive compared to the data communication between CRAMs within

a tile (which happens using the static H-tree interconnect). Considering the overhead of commu-

nicating data between tiles, it is often inefficient to reduce the partial sum across different tiles.

Therefore, our compiler only seeks to map data parallel loops to inter-tile parallelism. Assuming

we have 120 tiles, each iteration of xo.o and y.o in Figure 13 are mapped to each tile exactly.

If the iterations exceed the number of tiles, the compiler will seek to tile the loops and execute

parts serially.

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

PIMSAB 91:15

Fig. 14. Distributing the parallelism intra-tile. Fig. 15. Bit-level lifetime analysis.

Intra-Tile Parallelism Distribution. Figure 14 shows that, after the inter-tile parallelism is fixed,

the compiler distributes the intra-tile parallelism by exploring the space of loop tiling. Each tiled

outer loop (with .o suffix) will be executed in serial by each tile’s controller, and each tiled inner

loop (with .i suffix) will be mapped to a CRAM array. The total iterations of these .i-loop should

not exceed the number of arrays. This can easily be enforced when tiling the loop by multiplying

the tiling factor. Besides, the CRAM buffer allocation should not exceed the wordlines available in

each array. When there are multiple distributions that fulfill these two constraints (parallelization

degree and CRAM buffer), we use two objectives to determine the best one. The primary objective

is more computing resource occupancy, and the second is less DRAM memory bandwidth. The

rationale behind this objective order is that a high computing resource occupancy often requires

high data bandwidth to sustain.

CRAM Buffer Allocation. CRAM buffer allocation is the key to determining the feasibility of a paral-

lel distribution. Here, we first explain how the compiler greedily exploits data reuse, and compute

occupancy, while not exceeding the CRAM capacity. Some overused CRAM capacity can be false

positive and eliminated through adaptive precision. If it turns out to be a true overuse, feedback

will be sent to the developer for a conservative initial loop organization. For the example shown

in Figure 14, the compiler greedily allocates the memory buffer at the highest serialized loop with

reuse. Then, the compiler tries to minimize the CRAM buffer occupancy by analyzing the data ac-

cess pattern of each operand. In the case shown in Figure 14, the size of each buffer is proportional

to the iterations of serialized loops. For example, the c.cram buffer size is 1×8×32, where 1 is the

serial iteration of xo.i.o, 8 is the serial iteration of y.o.o, and 32 is the precision of the integers.

Parallelizing xo.i is favored, because it saves more buffer occupancy for both a&c, considering

b.cram are all scalars. After fully parallelizing xo.i, y.o is further parallelized to fill the remaining

arrays for compute resource occupancy. Finally, c buffer, 1×8×32 = 256 wordlines, already occupies

each entire CRAM array, with no space remaining for other operands, intermediate values, which

indicates the unfeasibility. In the next section, we will explain how we squeeze CRAM allocation

to optimize this false overuse.

5.3 Optimizing CRAM Data through Adaptive Precision

False overused CRAM allocation can be optimized so that potentially more aggressive parallel

distribution can be feasible. For the example in Figure 14, 32 ×8 = 256 wordlines are required for

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

91:16 S. Ma et. al

the accumulated results (c.cram), 8 ×1 = 8 wordlines for the operand a, 1 wordline for the operand

b, and implicit 32 wordlines for the intermediate results. In total, 256 + 8 + 32 + 1 = 297 wordlines,

which exceeds 256 wordlines of each array. Next, we will explain how our optimizations make them

fit. These optimizations mostly take advantage of the divisible nature of bit-serial arithmetic—each

bit of results is independently accessible. We call these optimizations Adaptive Precision.

The minimum feasible precisions are adopted to override the precision in the original program:

Multiplying an a-bit and ab-bit number is at most a +b bits; accumulating k a-bit numbers requires

only a+�log(k)� bits. Specific to the example shown in Figure 12, though the results are accumu-

lated on i32, only i26 is required. The input operands are both i8, so the result of multiplication

is within i16. We now have p = 1024 i16 accumulated, in total log21024 + 16 = 26 bits for each

accumulation. Therefore, we in total saved (32 - 26) x 8 + 16 = 64 wordlines, so now only 249

wordlines are required. In addition to saving space in CRAMs, using this technique also improves

performance. Without this technique, existing data in wordlines would have to be spilled to DRAM

and read back later, consuming additional cycles. Alternatively, the compiler would need to use a

less aggressive parallelization strategy leading to lower performance.

The divisible nature of bit serial arithmetic makes each bit have its own lifetime. We extend the

code scheduling in CHOPPER [34] to an even broader applicability. For a multiplication that is con-

sumed immediately by an addition, instead of keeping the whole 16 bits of multiplication, we can

add it to the accumulator as soon as a bit is finalized. As shown in Figure 15, after i cycles of mul-

tiplication, the ith bit is finalized, and it always maintains a half-width active window when doing

a multiplication. Therefore, this saves 16/2=8 wordlines, and now we occupy only 243 wordlines.

5.4 Data Loading & Packing

Once parallelism distribution passed the constraint check after these optimizations, the compiler

will then inspect the memory access pattern to generate code for data loading and packing. If

several tiles are using the same data, the common memory traffic will be converted to on-chip net-

work communication. The compiler uses data transfer instructions such as tile_tx and tile_rx
for such cases. If the data needs to be broadcasted to multiple tiles, the compiler invokes library

function tile_bcast provided for broadcasting data across tiles. This broadcast can be invoked

using the systolic mode. The compiler also analyzes the operands loaded to the CRAM arrays

within a tile to determine how they should be shuffled. For example, xo is not related to read-

ing b.cram[y,k], so loaded b should be broadcast to all the arrays mapped to different iterations

of xo. For such cases, the compiler uses the load_shf or the cram_local_shf instructions with

the shuffle pattern specified through the shf argument. The shuffling pattern can be broadcast

or different types of multicast as described in Section 4.2. When constants or scalars are used for

multiplications, the compiler uses the load_rf and store_rf instructions for loading data to the

RF and storing data from the RF respectively, and the instruction mul_const is subsequently used

for the computation operations.

5.5 Implementation

We integrate our compiler analysis and transformations to the TVM compilation flow. TVM pro-

vides rich code organization primitives to tune loop organizations and allocate memory buffers.

We start with the initial code organization provided by user, and apply our explored parallelism

and memory allocation. This is lowered to an IR with all the loops and buffers instantiated. Then

CRAM data optimization is done on this level of IR. If the memory occupancy satisfies the hardware

constraints, all the arithmetic operations are rewritten in bit-serial intrinsics, including arithmetic

operations, memory loading, and data transfer, which are ready for code generation. If not, we in-

voke a feedback loop to explore a more conservative code organization for less memory occupancy.

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

PIMSAB 91:17

6 Evaluation Methodology

6.1 Modeling PIMSAB

We develop a cycle-accurate simulator in C++ to model the PIMSAB hardware. The simulator

executes a program written in the ISA described in Section 4.1. An input configuration file is used

to specify various parameters of the microarchitecture. The values of area and energy for various

blocks and instructions (as described below) are incorporated into the simulator. Various metrics

like cycles and energy breakdown by component or instructions are reported by the simulator. We

validated the simulator using simple handwritten kernels first and then with microbenchmarks.

Thus, our model is well calibrated and realistic.

We use a Verilog behavioral model of the CRAM to obtain instruction cycle counts. For the PEs

in each SRAM, we write transistor level code and evaluate area and energy using SPICE with 22

nm ASU PTM technology [40]. Area and power of RAMs is obtained using the OpenRAM memory

compiler [17]. We write Verilog RTL for components such as the static network’s H-tree switch,

shuffle logic, instruction controller, transpose unit, and register file. We use Synopsys VCS for

simulation and Synopsys Design Compiler (using FreePDK45 [31]) to obtain post-synthesis area

and power. We further assume a 15% area overhead for place and route [20]. For the dynamic NoC,

we use PAT-Noxim simulator [33] and extract area and energy values for the routers and links.

For cycles required for packet transmission through the dynamic NoC, we model the NoC in our

simulator. For the on-chip DRAM and PCIe controllers and transceivers, we obtain areas from A100

die analysis. For DRAM energy, we use a simple analytical model calibrated from memory-only

microbenchmarks on the A100. We scale all values to 22 nm using scaling factors for area, power

and delay from [38].

6.2 Baselines

GPUs are the most common commercially available accelerators for DL workloads; so we compare

PIMSAB against NVIDIA A100 GPU. Additionally, we compare against state-of-the-art prior SRAM

and DRAM based PIMs (DualityCache and SIMDRAM). To make fair comparisons, we build three

different PIMSAB configurations for each of the comparisons. Table 3 shows these different archi-

tectures and compares their type, programming model, and level of automation with the ability to

handle reuse. Table 4 shows the configuration details of these architectures.

NVIDIA A100 GPU. We provision PIMSAB to have the same area (825 mm2 in 7nm, i.e., 2,950

mm2 in 22 nm) and DRAM bandwidth (12,288 bits/cycle, i.e., 1,866 GB/s @ 1,215 MHz). We also

assume the same DRAM size as A100 (40 GB), and all benchmarks fit in this memory. PIMSAB has

a memory controller to interface with external HBM DRAM, similar to A100. GPU performance

is measured by running on an A100 using NVIDIA’s profiler NSight Compute. Each kernel is mea-

sured by averaging 500 launches to exclude the device overhead. To compare the dynamic energy

of PIMSAB with A100, the static energy is normalized indirectly to A100 through having the same

area footprint and DRAM bandwidth. The NVIDIA GPU uses CUDA as the programming language.

NVIDIA’s CUDA compiler and support in high-level frameworks such as PyTorch provides high

degree of automation, enabling expressing workloads at a high level of abstraction. With caches

on the GPU, the workloads can take advantage of data reuse.

Duality Cache. Duality Cache (DC) [14] is an in-cache SRAM PIM architecture that builds on

Neural Cache [11], and uses a subset of CUDA as a programming language. It is the state-of-the-art

SRAM PIM architecture with a full-stack implementation, similar to PIMSAB. This makes DC

relevant to compare with PIMSAB. DC integrates PIM into on-chip CPU caches whereas PIMSAB

is a dedicated accelerator chip. DC has 1.14 million processing elements and runs at a frequency

of 2.6 GHz. We design a PIMSAB chip (PIMSAB-D) sized to match the compute throughput of DC

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

91:18 S. Ma et. al

Table 3. Qualitative Attributes of PIMSAB and Baselines

Architecture Type of chip Programming model Level of automation Ability to handle reuse

PIMSAB Accelerator Tensor DSL High Yes

Duality Cache Cache CUDA High Yes

SIMDRAM DRAM chip Manual coding using intrinsics Low No

GPU Nvidia A100 Accelerator CUDA High Yes

Table 4. Configuration Details PIMSAB, Baselines, and PIMSAB Variants Provisioned for Comparison

PIMSAB Nvidia A100 PIMSAB-D Duality Cache PIMSAB-S SIMDRAM

Compute Through-

put (int8)

352 TOPS 624 TOPS (Ten-

sor Core), 19.5

TOPS

49.5 TOPS 49.5 TOPS 24.75 TOPS 27 GOPS

Area (mm
2) 825 826 206 (7nm) 471 (22nm) 103 (7nm) –

Frequency (GH z) 1.5 1.4 1.5 2.6 1.5 2.4

On-Chip memory

(MB)

256 87 64 35 32 16384

DRAM B/W (GB/s) 1866 1866 933 – 777 19.2 (external),

4.68 TB/s (inter-

nal)

Number of PEs 7864320 – 1966080 1146880 983040 983040

for a fair comparison. PIMSAB-D has 30 tiles (organized in a 6 ×5 mesh). The CRAM size for DC

is the same as for PIMSAB (256 bitlines ×256 wordlines). DC provides compiler support, enabling

high degree of automation. Since DC is a cache-based architecture, workloads can take advantage

of data reuse.

SIMDRAM. SIMDRAM [18] is a DRAM PIM architecture and was shown by the authors to perform

better than DC for some workloads. We use the 1 bank configuration mentioned in their article,

when comparing SIMDRAM to PIMSAB. We design a PIMSAB configuration (PIMSAB-S) to match

the number of processing elements in SIMDRAM. PIMSAB-S has one tile. We use three full Deep

Neural Networks (LeNet, VGG-13, and VGG-16) as benchmarks for comparison since they were

used in the SIMDRAM work. SIMDRAM does not have a compiler. The programming is done

using intrinsics, which is tedious and error prone. Since SIMDRAM is a DRAM-based architecture,

it cannot exploit the data locality inherently present in compute-intensive workloads like GEMM.

6.3 Benchmarks

Table 5 lists the benchmarks, along with input size and precision, used in our evaluations. When

comparing with A100, we choose a set of microbenchmarks from high-performance libraries, in-

cluding ArrayFire[45] (fir), and CUTLASS[28] (gemm, gemv, conv2d). These microbenchmarks

represent the fundamental operation in popular applications like deep learning and signal pro-

cessing. We run full networks like quantized Resnet18 from MxNet Model Zoo and BERT to show

our support for end-to-end applications. We also support various precisions like FP32, INT8, INT16,

making our system precision agnostic. Our kernels are using mixed precision—the input data, the

compute operations, the storage use different precisions. PIMSAB’s adaptive precision feature is

more sophisticated than NVIDIA Tensor Core’s mixed precision support because it can support

arbitrary precisions, e.g., different stages of accumulation can use different precisions. PIMSAB’s

architecture can support other mixed precision modes such multiplying operands of two different

precision; however, this is not used in our benchmarks currently.

To ensure an apple-to-apple comparison with DC and SIMDRAM, we use benchmarks used by

those works. DC uses Rodinia benchmarks for their evaluation. So, we also use Rodinia bench-

marks to compare with DC directly. However, some benchmarks from the Rodinia suite were

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

PIMSAB 91:19

Table 5. Benchmarks used for Evaluation

Benchmark Size Precision Comparison DRAM Usage

vecadd input=15728640 int8 A100 RD=30 MB,WR=15MB

fir input=7833600,
filter=32

int16, acc=int16 A100 RD=15.6MB,WR=15.6MB

gemv m=61440, k=2048, n=1 int8, acc=int32 A100 RD=128MB,WR=262KB

gemm m=61440, n=32,
k=2048

int4, acc=int16 A100 RD=62MB,WR=3.9MB

conv2d input=9×9×256×2,
weights=3×3×256×256

int8, acc=int32 A100 RD=815KB ,WR=100KB

resnet18 input=224×224×3×1,
output=1000×1

int8, acc=int32 A100 RD=6.1MB,WR=1.3MB

bert input=384×768,
output=384×768

int8, acc=int32 A100 RD=26 MB,WR=9MB

backprop input=65536×16 fp32 DC RD=8.3MB,WR=4.1MB

dwt2d input=1024×1024 fp32 DC RD=4.1MB,WR=6.2MB

gausselim input=256×256 fp32 DC RD=512KB,WR=262KB

hotspot input=1024×1024 fp32 DC RD=20MB,WR=4.1MB

hotspot3d input=512×512 fp32 DC RD=16.7MB,WR=8.3MB

vgg13 input=224×224×3×1,
output=1000×1

binarized SIMDRAM RD=4.9MB,WR=65KB

vgg16 input=224×224×3×1,
output=1000×1

binarized SIMDRAM RD=5.9MB,WR=65KB

lenet input=32×32,
output=10×1

binarized SIMDRAM RD=139KB,WR=16

Fig. 16. Comparing PIMSAB

with NVIDIA A100.

excluded from comparison because those benchmarks have irregular parallelism or indirect mem-

ory accesses, which are not supported by PIMSAB. For SIMDRAM comparison, we use three bi-

nary neural networks: VGG-13, LeNet, and VGG-16. We obtained the raw runtimes numbers for

the benchmarks they used by directly reaching out to the authors and used those for comparison.

7 Results

7.1 Comparison with NVIDIA A100 GPU

Figure 16 shows the execution time and energy comparison against NVIDIA A100 GPU. On aver-

age, PIMSAB achieves 4.80× improvement in execution time, and 3.76× improvement in energy effi-

ciency. PIMSAB outperforms A100 on vecadd because of the higher compute throughput. PIMSAB

significantly surpasses A100 on fir because of the unaligned memory access caused by the sliding

window. In PIMSAB, this program behavior can easily be handled by shifting bits across bitlines,

while it prevents the GPU from fully utilizing the memory bandwidth. PIMSAB can achieve slightly

less performance as A100 for gemm, even though A100 uses Tensor Cores for GEMM, which pro-

vide 2× peak TOPs compared with PIMSAB. In terms of energy consumption, PIMSAB is better

than A100 for gemm. conv2d is sped up by 13.84× compared to A100 and gemv is sped up by 1.78×.

The two main sources of the speedup are the high data parallelism in PIMSAB leading to reduced

instruction overhead, and the larger on-chip buffer (256 MB on PIMSAB vs. 96 MB, including L2,

shared memory and RF, on A100) leading to more data reuse and reduces off-chip memory traf-

fic. These reasons also lead to significant energy savings. PIMSAB utilizes broadcast operations to

avoid excess data read from DRAM speeding up the conv2d operations. We observe a speedup of

2.8× and 2.3×on resnet18 and bert, respectively.

7.2 Comparison with SRAM PIM (Duality Cache)

Figure 17(a) shows PIMSAB-D outperforms Duality Cache by 3.7× on average across several Ro-

dinia benchmarks. PIMSAB-D shows speedups over Duality Cache on backprop, hotspot2d, and

hotspot3d, because the tensor DSL programming compiler can easily analyze the memory foot-

print and allocate buffers for memory reuse. In addition, Duality Cache still adopts a GPU-like

warp-wise execution, which imposes high overhead to coordinate unaligned data loading. PIMSAB

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

91:20 S. Ma et. al

Fig. 17. Appropriately provisioned PIMSAB com-

pared with prior in-SRAM and in-DRAM systems.

Fig. 18. Categorized breakdown of each workload.

can simply shift across bitlines, even across CRAMs in a tile, so it outperforms DC on dwt2d.

gaussian is bound by memory packing on DC, but our hardware is well specialized for it because

of the H-tree intra-tile interconnect, which also leads to fewer computational instructions.

7.3 Comparison with DRAM PIM (SIMDRAM)

Figure 17(b) shows our comparison against SIMDRAM. PIMSAB-S outperforms SIMDRAM [18] by

3.88× on average across real world neural networks, because in-SRAM processing takes advantage

of data reuse in on-chip buffers. SIMDRAM has to pay DRAM read latencies for every computation

and is at a disadvantage for workloads with data reuse. PIMSAB’s speedup is lower on LeNet

because the LeNet model is relatively small—SRAM-DRAM transfer occupies a larger portion of

execution, compared to the other networks.

7.4 Time and energy breakdown

Figure 18(a) shows the breakdown of time spent in each benchmark. Since vecadd has low arith-

metic intensity, most of the time is spent on DRAM loads and stores, as expected. In fir, about

60% of the time is spent on DRAM traffic. gemv is also DRAM bound because of low reuse. gemm
and conv2d are dominated by network traffic, because our optimization objective is to minimize

the estimated DRAM traffic by converting them to network data transfer through broadcasting.

resnet18 is mainly a sequence of convolution layers followed by element-wise operations. The

execution time breakdown for resnet18 is very similar to conv2d. bert is mainly composed of

several GEMM layers and a single softmax layer. As mentioned earlier, our GEMM kernels in

PIMSAB are primarily limited by network traffic. However, BERT, due to its distinct shapes with

high compute density, is compute-bound.

Figure 18(b) shows the breakdown of energy consumed in each benchmark. vecadd, fir, and

gemv are dominated by DRAM energy because of the limited reuse. In microbenchmarks like gemm
and conv2d, 20-40% of the energy is spent on computation. In resnet18 and bert, energy is ma-

jorly spent on compute and on-chip network traffic.

7.5 Sensitivity to different hardware parameters

As shown in Figure 19, we analyze a set of seven different hardware configurations, obtained by

varying three hardware parameters, with the microbenchmarks. Figure 19(a) studies the sensitiv-

ity of the number of compute resources (PEs) by tuning the size of each CRAM while retaining

a constant memory capacity. Assuming each CRAM is a square (#wordlines = #bitlines), halving

the number of bitlines results in 4× more compute intensity (more PEs for the same amount of

memory). For vecadd and gemv, changing computational intensity has an insignificant impact

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

PIMSAB 91:21

Fig. 19. Perf. sensitivity to hardware parameters. Fig. 20. Perf. sensitivity to workload parameters.

because the benchmarks are memory bound. In fir, we see an interesting observation. Perfor-

mance improves as the CRAM size is changed from 512 ×512 to 256 × 256 on account of increased

compute throughput, but the performance degrades to 57% for a CRAM size of 128 × 128. This

is because the workload is too small to fully utilize the available compute throughput. The gemm
workload exhibits ˜40% increase in performance when compute intensity increases from 512 ×512

CRAM size to 256× 256 CRAM size. However, when the CRAM size is changed to 128×128, the per-

formance only increases by 11%. This is due to the time taken by intra-tile inter-CRAM reductions

starts to increase significantly; smaller CRAMs means more inter-CRAM reduction is required.

The conv2d workload still exhibits ˜ 20% increase in performance when CRAM size changes to 128

× 128, because conv2d has less network traffic.

Figure 19(b) studies the tradeoff between the number of tiles and CRAMs per tile, while retaining

the same number of compute resources. Increasing the number of tiles implies a larger inter-tile

dynamic network (NoC), but smaller intra-tile static network, and vice-versa. The results of this

study suggest that more tiles (darker grey bars in the figure) hurt performance by 4.3%, and larger

tiles (white bars in the figure) provide diminishing returns (~2.6% improvement).

Figure 19(c) shows the tradeoff by changing the memory bandwidth. This is achieved by chang-

ing the mesh geometry, since only the top-row tiles have memory controllers. The massive data

parallelism requires massive data to sustain. Therefore, workloads with poor reuse, like vecadd,

and gemv, which are bounded by memory accesses, achieve nearly linear speedup when doubling

the memory bandwidth (i.e., number of columns in the mesh is doubled). Although according to

Figure 18(a), gemm’s execution time is not dominated by DRAM bandwidth, the performance is

significantly improved when number of columns in the mesh increases. This speedup is attributed

to reduced data transfer time because the mesh height is reduced to half. conv2d is an outlier; the

performance is slightly lowered by the memory bandwidth increase. Because broadcasting domi-

nates the data loading time, memory bandwidth is not fully utilized. Because of the wider mesh

width, loaded data is broadcasted to further tiles, increasing the overall loading time.

7.6 Sensitivity to different workload parameters

Figure 20(a) shows the sensitivity of PIMSAB’s performance to workload sizes, by studying two

additional sizes, i.e., halving and doubling the data. The execution time of workloads with limited

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

91:22 S. Ma et. al

data reuse (e.g., vecadd, gemv) is linearly proportional to the data size. fir shows a higher than

0.5× execution time when the data size is reduced to 0.5×. The smaller sized benchmark causes un-

derutilization of the hardware. gemm has slightly lower than 2× execution time when the data size

is increased by 2×; larger sizes lead to better hardware utilization because of data reuse. Because

of compute underutilization caused by shapes, conv2d execution time does not vary linearly with

change in input. Bigger input increases input loading and computing time, but does not increase

weight loading time which is significant, leading to only a 1.5×increase in overall time. Figure 20(b)

shows the sensitivity of PIMSAB’s performance to the precision of the inputs. A unique capability

of bit-serial systems is to support any arbitrary precision. We vary the input precisions from 4-bits

to 8-bits. Since the DRAM representation always aligns to a power of 2, the DRAM traffic remains

the same for int5 to int8. The DRAM bound benchmarks like vecadd and gemv tend to show the

effect. vecadd is highly dominated by DRAM reads; thus, it shows no change in performance for

5-bits to 8-bits. gemv which is also a DRAM bound workload but has more compute and reuse

as compared to vecadd shows slight increase in execution time going from 5-bits to 8-bits. Since

computation and on-chip network traffic account for a significant portion of the execution time

in conv2d and gemm operations, the performance of these workloads varies almost linearly with

precision. Note that adaptive precision eliminates the requirement to utilize 8-bit computations

for smaller precisions.

7.7 Ablation Studies

In this section, we show the results of ablation studies, where we disable microarchitectural and

compiler features one-at-a-time and observe their impact of the performance of each benchmark.

In these experiments, the baseline is the PIMSAB with all features enabled. Figure 21 shows the

performance of each benchmark relative to this baseline, with one feature disabled. In Figure 21(a),

we disable the shuffle units. We observe that the performance of conv, gemm, resnet18 and bert
degrades significantly. Performance degradation comes mainly from redundant data loads which

are required in the absence of shuffle units. Other benchmarks do not utilize shuffling and therefore

have no performance differences. Figure 21(b) shows the impact of disabling constant operations.

Up to 45% degradation of performance is seen (in the fir case). Disabling constant operations

means duplicating data in the CRAM, which means additional rows will be used, which can cause

data spills to DRAM. The fir benchmark spends relatively more time on constant operations

than gemv, therefore it suffers more performance degradation. Figure 21(c) shows the performance

degradation if we disable the Htree-based interconnect within each tile and replace it with a sim-

plistic bus-based interconnect (similar to [19]). We see a reduction in performance in conv, gemm,

resnet18 and bert. These benchmarks require reductions within tiles that are not done efficiently

with the bus. Other benchmarks do not use the H-tree for reduction and their performances do not

change as much. Figure 21(d) shows that disabling the cross-CRAM shifting feature affects the fir

benchmark significantly, because shifts have to be done external to PIMSAB (e.g., by the transpose

unit). The other benchmarks do not use the cross-CRAM shift feature. Figure 21(e) shows the im-

pact of disabling systolic broadcasting. When systolic broadcasting is disabled, we use a one-to-all

broadcast instead. In conv and resnet18, broadcasting weights or inputs takes majority of time;

therefore, their performance degrades by up to 40%. In other benchmarks, broadcasting only takes a

small portion of the overall time. Therefore, the performances are not significantly impacted. In Fig-

ure 21(f), we show the impact of disabling the mesh topology for the inter-tile dynamic network

and replace it with a ring interconnect instead. The performances of all workloads degrade signifi-

cantly since they all become interconnect-bound, because the average latency of communication is

higher in a ring interconnect than a mesh interconnect. Some workloads such as conv2d and gemm
have broadcast operations, which become very expensive in ring interconnect. Also, when multiple

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

PIMSAB 91:23

Fig. 21. Ablation studies. Y-axis is the performance compared to the baseline.

tiles load from DRAM at the same time, the ring topology causes significant resource contention

and high latency. A ring interconnect is commonly used in CPU caches and is used in Duality Cache

[14]. Figure 21(g) shows impact of disabling the inter-CRAM reduction and use intra-CRAM reduc-

tion instead. Intra-CRAM reduction is done by shifting data between bitlines as described in [11].

This results in more cycles compared to inter-CRAM reduction, because shifting data through

N bitlines takes N cycles, but shifting data from one CRAM to another takes log(N) cycles, at-

tributed to the H-tree. Hence, all workloads that heavily utilize inter-CRAM reduction (conv2d,

gemm, resnet18, bert) show significant performance degradation. We also perform an experiment

where all these features are disabled (Figure 21(h)). We see >90% degradation in all workloads.

We also study the effects of adaptive precision optimization mentioned in Section 5.3. As dis-

cussed in that section, adaptive precision helps performance by using only the number of bits

required for a particular operation. This saves memory as well as cycles. The results of this study

are presented in Table 6. No speedups are observed for vecadd and fir benchmarks. vecadd uses

int8 precision and does not have any accumulations. For fir, the accumulation precision (int16) is

the same as multiplication precision (int16), so adaptive precision is not used. gemv is sped up by

only 0.34% because of the small number of accumulation operations in the workload. Speedups of

2.77%, 4%, and 3.5% are observed in gemm, conv2d, and resnet18 respectively. Speedup of 15% is

observed in bert as the matrix multiplications in bert involve significantly more accumulations

than gemm and take more advantage of adaptive precision.

7.8 Chip Area Distribution

Figure 22 shows the area distribution of the PIMSAB chip. 72% of the chip area is consumed by

the CRAMs, indicating a large percentage of useful compute/storage area. The dynamic and static

networks take ∼7.5% of the chip area, while the shuffle logic occupies ∼1.5% of the area. The

DRAM controller, transpose units and transceivers (XCVR) occupy 17% of the chip. Considering

the additional capabilities enabled by PIMSAB, the overhead is relatively low.

8 Related Work

Instead of moving data to distant compute units, PIM brings computation closer to the data.

Recent works have used Non-Volatile Memories (NVM) like Resistive RAMs (ReRAM) or

Spin-Transfer Torque Magnetic RAM (STT-MRAM) [10, 19, 21, 22, 37]. NVM-based solutions

are nascent and are yet to reach large scale production, and have endurance and technology

scaling limitations.

Many DRAM-based PIM were proposed [16, 18, 29, 36], without compilers, so they are difficult

to program them. CHOPPER [34] is a full-stack DRAM PIM that is programmed from a bit-sliced

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

91:24 S. Ma et. al

Fig. 22. Chip area distribution of PIMSAB.

Table 6. Speedup Obtained by Enabling Adaptive

Precision Compiler Optimization

Benchmark Speedup (%)

vecadd 0

fir 0

gemv 0.34

gemm 2.77

conv2d 4

resnet18 3.5

bert 15

DSL. Inspired by their code scheduling strategies, we developed our bit-level lifetime analysis

technique. UPMEM [32] and Samsung HBM-PIM [12] are recent commercial DRAM PIM archi-

tectures. SRAM-based PIM has the advantage of simple integration with compute logic using the

same process, and also the ability to exploit data reuse in applications. PIMSAB uses SRAM-based

PIM. Some SRAM-based approaches are analog [7, 25, 26], requiring expensive DACs and ADCs.

Other approaches use the property of enabling multiple wordlines in an SRAM at the same time

[11, 14, 42]. This requires reducing wordline voltage to avoid data corruption, and modifying sense

amplifiers. PIMSAB uses conventional dual ported RAMs instead, based on CoMeFa [5]. This costs

area, but is practical and robust.

Neural Cache [11] and Duality Cache [14] are popular SRAM-based PIM architectures in which

the focus is to repurpose existing caches in CPUs to perform in-situ computations. Neural cache

uses an ad-hoc programming approach, and Duality Cache introduces a restricted version of the

CUDA programming interface; both of these are lower-level and expose hardware aspects to pro-

grammers (e.g. SRAM-array dimensions). Our Tensor DSL abstracts hardware and is easier to pro-

gram and perform explorations with.

Fujiwara et al. [15] design an SRAM-based compute-in-memory chip that provides 254 TOP-

S/W throughput for 4-bit operations. They fabricate the chip, but no performance evaluation of

real workloads is provided. Other works such as PUMA [4] and IMDPP [13] develop compilers to

make PIM systems easier to program. Their TensorFlow or C++ based graph-level programming

interfaces are harder to perform performance tuning with than our Tensor DSL. Also, they use

ReRAM instead of SRAM-based PIM.

Recently, Processing-In-Memory has been proposed for FPGAs as well. CCB [43] uses the same

technology as Neural Cache [11] to enable block RAMs on an FPGA to perform computation,

while CoMeFa [5] uses the dual-ported nature of block RAMs. Comparing with PIMSAB’s Tensor

DSL programming interface, these works still require users to design finite state machines to send

instructions to the RAM blocks, which is error-prone and time-consuming.

The bit-serial approach has a long history, going back to their use for neural networks in the

1980s [8, 30]. Stripes [23] is a more recent such DNN accelerator. PIMSAB combines a bit-serial

approach with PIM.

9 Conclusion

We present PIMSAB, a system for in-memory acceleration of massively parallel workloads like

Deep Learning. Our system employs novel mechanisms for spatially aware communication and

bit-serial-aware computation. While other PIM accelerators have been proposed for DL, our work

makes significant strides in making PIM-based accelerators feasible for real-world DL problems.

With the scalable hierarchical architecture combined with the H-tree and mesh interconnects at

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

PIMSAB 91:25

different levels, along with the shuffle network, adaptive precision and constant operation support,

we make significant improvement in the capability of PIM-based accelerators.

References

[1] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish Narayanasamy, David Blaauw, and Reetuparna Das. 2017.

Compute caches. In 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA). 481–492.

https://doi.org/10.1109/HPCA.2017.21

[2] A. A. Aggarwal and D. M. Lewis. 1994. Routing architectures for hierarchical field programmable gate arrays. In

1994 IEEE International Conference on Computer Design: VLSI in Computers and Processors. 475–478. https://doi.org/

10.1109/ICCD.1994.331954

[3] Khalid Al-Hawaj, Olalekan Afuye, Shady Agwa, Alyssa Apsel, and Christopher Batten. 2020. Towards a reconfig-

urable bit-serial/bit-parallel vector accelerator using in-situ processing-in-SRAM. In 2020 IEEE International Sympo-

sium on Circuits and Systems (ISCAS). 1–5.

[4] Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu, Martin Foltin, R. Stanley Williams, Paolo Fara-

boschi, Wen-mei W. Hwu, John Paul Strachan, Kaushik Roy, and Dejan S. Milojicic. 2019. PUMA: A programmable

ultra-efficient memristor-based accelerator for machine learning inference. In 24th International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems (ASPLOS ’19). ACM, New York, , 715–731.

https://doi.org/10.1145/3297858.3304049

[5] Aman Arora, Tanmay Anand, Aatman Borda, Rishabh Sehgal, Bagus Hanindhito, Jaydeep Kulkarni, and Lizy K. John.

2022. CoMeFa: Compute-in-memory blocks for FPGAs. In 2022 IEEE 30th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM). 1–9. https://doi.org/10.1109/FCCM53951.2022.9786179

[6] H. B. Bakoglu. 1990. Circuits, interconnections, and packaging for VLSI. Addison-Wesley Pub. Co.

[7] Avishek Biswas and Anantha P. Chandrakasan. 2019. CONV-SRAM: An energy-efficient sram with in-memory dot-

product computation for low-power convolutional neural networks. IEEE Journal of Solid-State Circuits 54, 1 (2019),

217–230. https://doi.org/10.1109/JSSC.2018.2880918

[8] Zoe Butler, Alan Murray, and Anthony Smith. 1989. VLSI Bit-Serial Neural Networks. Springer US, Boston, MA,

201–208.

[9] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan

Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An automated end-to-end

optimizing compiler for deep learning. In 13th OSDI.

[10] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and Yuan Xie. 2016. PRIME: A

novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. In 2016

ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA). 27–39. https://doi.org/10.1109/

ISCA.2016.13

[11] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan, Ravi Iyer, Dennis Sylvester, David Blaaauw,

and Reetuparna Das. 2018. Neural cache: Bit-serial in-cache acceleration of deep neural networks. In 45th Annual

International Symposium on Computer Architecture (ISCA ’18). (Los Angeles, California). IEEE Press, 383–396. https:

//doi.org/10.1109/ISCA.2018.00040

[12] Young-Cheon Kwon, Suk Han Lee, Jaehoon Lee, Sang-Hyuk Kwon, Je Min Ryu, Jong-Pil Son, O. Seongil, Hak-Soo

Yu, Haesuk Lee, Soo Young Kim, Youngmin Cho, Jin Guk Kim, Jongyoon Choi, Hyun-Sung Shin, Jin Kim, BengSeng

Phuah, HyoungMin Kim, Myeong Jun Song, Ahn Choi, Daeho Kim, SooYoung Kim, Eun-Bong Kim, David Wang,

Shinhaeng Kang, Yuhwan Ro, Seungwoo Seo, JoonHo Song, Jaeyoun Youn, Kyomin Sohn, and Nam Sung Kim. 2021.

25.4 A 20nm 6GB function-in-memory DRAM, based on HBM2 with a 1.2TFLOPS programmable computing unit

using bank-level parallelism, for machine learning applications. In 2021 IEEE International Solid- State Circuits Con-

ference (ISSCC). 350–352. DOI:https://doi.org/10.1109/ISSCC42613.2021.9365862

[13] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. 2018. In-memory data parallel processor. In 23rd International

Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’18). ACM, New

York, , 1–14. https://doi.org/10.1145/3173162.3173171

[14] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. 2019. Duality cache for data parallel acceleration. In 46th Interna-

tional Symposium on Computer Architecture (ISCA ’19) (Phoenix, Arizona). ACM, New York, , 397–410.

[15] Hidehiro Fujiwara, Haruki Mori, Wei-Chang Zhao, Mei-Chen Chuang, Rawan Naous, Chao-Kai Chuang, Takeshi

Hashizume, Dar Sun, Chia-Fu Lee, Kerem Akarvardar, Saman Adham, Tan-Li Chou, Mahmut Ersin Sinangil, Yih

Wang, Yu-Der Chih, Yen-Huei Chen, Hung-Jen Liao, and Tsung-Yung Jonathan Chang. 2022. A 5-nm 254-TOPS/W

221-TOPS/mm2 fully-digital computing-in-memory macro supporting wide-range dynamic-voltage-frequency scal-

ing and simultaneous MAC and write operations. In 2022 IEEE International Solid-State Circuits Conference (ISSCC),

Vol. 65. 1–3. https://doi.org/10.1109/ISSCC42614.2022.9731754

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

https://doi.org/10.1109/HPCA.2017.21
https://doi.org/10.1109/ICCD.1994.331954
https://doi.org/10.1145/3297858.3304049
https://doi.org/10.1109/FCCM53951.2022.9786179
https://doi.org/10.1109/JSSC.2018.2880918
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1109/ISCA.2018.00040
https://doi.org/10.1109/ISSCC42613.2021.9365862
https://doi.org/10.1145/3173162.3173171
https://doi.org/10.1109/ISSCC42614.2022.9731754

91:26 S. Ma et. al

[16] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. 2019. ComputeDRAM: In-memory compute using off-the-

shelf DRAMs. In 52nd Annual IEEE/ACM International Symposium on Microarchitecture . ACM, New York, , 100–113.

https://doi.org/10.1145/3352460.3358260

[17] M. R. Guthaus, J. E. Stine, S. Ataei, Brian Chen, Bin Wu, and M. Sarwar. 2016. OpenRAM: An open-source memory

compiler. In 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). https://doi.org/10.1145/

2966986.2980098

[18] Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, João Dinis Ferreira, Nika Mansouri Ghiasi, Minesh Patel,

Mohammed Alser, Saugata Ghose, Juan Gómez-Luna, and Onur Mutlu. 2021. SIMDRAM: a framework for bit-serial

SIMD processing using DRAM. In 26th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’21). ACM, New York, , 329–345.

[19] Bagus Hanindhito, Ruihao Li, Dimitrios Gourounas, Arash Fathi, Karan Govil, Dimitar Trenev, Andreas Gerstlauer,

and Lizy John. 2021. Wave-PIM: Accelerating wave simulation using processing-in-memory. In 50th International

Conference on Parallel Processing (ICPP 2021) (Lemont, IL). ACM, New York, , Article 8, 11 pages. https://doi.org/10.

1145/3472456.3472512

[20] Chun Hok Ho, Chi Wai Yu, Philip H. W. Leong, Wayne Luk, and Steven J. E. Wilton. 2007. Domain-specific hybrid

FPGA: Architecture and floating point applications. In 2007 International Conference on Field Programmable Logic

and Applications. 196–201. DOI:https://doi.org/10.1109/FPL.2007.4380647

[21] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing. 2019. FloatPIM: In-memory acceleration of deep

neural network training with high precision. In 46th International Symposium on Computer Architecture. 802–815.

https://doi.org/10.1145/3307650.3322237

[22] Shubham Jain, Ashish Ranjan, Kaushik Roy, and Anand Raghunathan. 2018. Computing in memory with spin-

transfer torque magnetic RAM. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 26, 3 (2018), 470–483.

https://doi.org/10.1109/TVLSI.2017.2776954

[23] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos. 2016. Stripes: Bit-serial deep neural network

computing. In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1–12.

[24] Mingu Kang, Sujan K. Gonugondla, Ameya Patil, and Naresh R. Shanbhag. 2018. A multi-functional in-memory

inference processor using a standard 6T SRAM array. IEEE Journal of Solid-State Circuits 53, 2 (Feb. 2018), 642–655.

https://doi.org/10.1109/JSSC.2017.2782087

[25] Mingu Kang, Sujan K. Gonugondla, and Naresh R. Shanbhag. 2020. Deep in-memory architectures in SRAM: An

analog approach to approximate computing. Proc. IEEE 108, 12 (2020), 2251–2275. https://doi.org/10.1109/JPROC.

2020.3034117

[26] Mingu Kang, Min-Sun Keel, Naresh R. Shanbhag, Sean Eilert, and Ken Curewitz. 2014. An energy-efficient VLSI archi-

tecture for pattern recognition via deep embedding of computation in SRAM. In 2014 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP). 8326–8330. https://doi.org/10.1109/ICASSP.2014.6855225

[27] Mingu Kang, Min-Sun Keel, Naresh R. Shanbhag, Sean Eilert, and Ken Curewitz. 2014. An energy-efficient VLSI archi-

tecture for pattern recognition via deep embedding of computation in SRAM. In 2014 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP). 8326–8330. DOI:https://doi.org/10.1109/ICASSP.2014.6855225

[28] Andrew Kerr, Haicheng Wu, Manish Gupta, Dustyn Blasig, Pradeep Ramini, Duane Merrill, Aniket Shivam, Piotr Ma-

jcher, Paul Springer, Markus Hohnerbach, Jin Wang, and Matt Nicely. 2022. CUTLASS. https://github.com/NVIDIA/

cutlass

[29] Shuangchen Li, Dimin Niu, Krishna T. Malladi, Hongzhong Zheng, Bob Brennan, and Yuan Xie. 2017. DRISA: A

DRAM-based reconfigurable in-situ accelerator. In 2017 50th Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO). 288–301.

[30] Alan Murray, Anthony Smith, and Zoe Butler. 1987. Bit-serial neural networks. In Neural Information Processing

Systems, D. Anderson (Ed.), Vol. 0. American Institute of Physics.

[31] NCSU. 2018. FreePDK45. https://www.eda.ncsu.edu/wiki/FreePDK45:Contents

[32] Joel Nider, Craig Mustard, Andrada Zoltan, John Ramsden, Larry Liu, Jacob Grossbard, Mohammad Dashti, Romaric

Jodin, Alexandre Ghiti, Jordi Chauzi, and Alexandra Fedorova. 2021. A case study of processing-in-memory in off-

the-shelf systems. In 2021 USENIX Annual Technical Conference (USENIX ATC 21). USENIX Association, 117–130.

https://www.usenix.org/conference/atc21/presentation/nider

[33] Amin Norollah, Danesh Derafshi, Hakem Beitollahi, and Ahmad Patooghy. 2018. PAT-noxim: A precise power &

thermal cycle-accurate NoC simulator. In 2018 31st IEEE International System-on-Chip Conference (SOCC). 163–168.

https://doi.org/10.1109/SOCC.2018.8618491

[34] Xiangjun Peng, Yaohua Wang, and Ming-Chang Yang. 2023. CHOPPER: A compiler infrastructure for programmable

bit-serial SIMD processing using memory in DRAM. In 2023 IEEE International Symposium on High-Performance

Computer Architecture (HPCA). 1275–1288.

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

https://doi.org/10.1145/3352460.3358260
https://doi.org/10.1145/2966986.2980098
https://doi.org/10.1145/3472456.3472512
https://doi.org/10.1109/FPL.2007.4380647
https://doi.org/10.1145/3307650.3322237
https://doi.org/10.1109/TVLSI.2017.2776954
https://doi.org/10.1109/JSSC.2017.2782087
https://doi.org/10.1109/JPROC.2020.3034117
https://doi.org/10.1109/ICASSP.2014.6855225
https://doi.org/10.1109/ICASSP.2014.6855225
https://github.com/NVIDIA/cutlass
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents
https://www.usenix.org/conference/atc21/presentation/nider
https://doi.org/10.1109/SOCC.2018.8618491

PIMSAB 91:27

[35] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amarasinghe, and Frédo Durand. 2012.

Decoupling algorithms from schedules for easy optimization of image processing pipelines. ACM Trans. Graph. 31,

4, Article 32 (Jul. 2012), 12 pages.

[36] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim, Michael A.

Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry. 2017. Ambit: In-memory accelerator for bulk

bitwise operations using commodity DRAM technology. In 2017 50th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO). 273–287.

[37] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar. 2016.

ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars. In 2016 ACM/IEEE

43rd Annual International Symposium on Computer Architecture (ISCA). 14–26.

[38] A. Stillmaker and B. Baas. 2017. Scaling equations for the accurate prediction of CMOS device performance from 180

nm to 7 nm. Integration, the VLSI Journal 58 (2017), 74–81. http://vcl.ece.ucdavis.edu/pubs/2017.02.VLSIintegration.

TechScale/

[39] William Tsu, Kip Macy, Atul Joshi, Randy Huang, Norman Walker, Tony Tung, Omid Rowhani, Varghese George,

John Wawrzynek, and André DeHon. 1999. HSRA: High-speed, hierarchical synchronous reconfigurable array. In

1999 ACM/SIGDA 7th International Symposium on Field Programmable Gate Arrays (FPGA ’99) (Monterey, CA) . ACM,

New York, , 125–134. https://doi.org/10.1145/296399.296442

[40] Arizona State University. 2012. Predictive Technology Model. http://ptm.asu.edu/

[41] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito, William S. Moses,

Sven Verdoolaege, Andrew Adams, and Albert Cohen. 2018. Tensor comprehensions: Framework-agnostic high-

performance machine learning abstractions. arXiv preprint arXiv:1802.04730 (2018).

[42] Jingcheng Wang, Xiaowei Wang, Charles Eckert, Arun Subramaniyan, Reetuparna Das, David Blaauw, and Dennis

Sylvester. 2020. A 28-nm compute SRAM with bit-serial logic/arithmetic operations for programmable in-memory

vector computing. IEEE Journal of Solid-State Circuits 55, 1 (2020), 76–86. https://doi.org/10.1109/JSSC.2019.2939682

[43] Xiaowei Wang, Vidushi Goyal, Jiecao Yu, Valeria Bertacco, Andrew Boutros, Eriko Nurvitadhi, Charles Augustine,

Ravi Iyer, and Reetuparna Das. 2021. Compute-capable block RAMs for efficient deep learning acceleration on FP-

GAs. In 2021 IEEE 29th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM).

88–96. https://doi.org/10.1109/FCCM51124.2021.00018

[44] Wm. A. Wulf and Sally A. McKee. 1995. Hitting the memory wall: Implications of the obvious. SIGARCH Comput.

Archit. News 23, 1 (1995).

[45] Pavan Yalamanchili, Umar Arshad, Zakiuddin Mohammed, Pradeep Garigipati, Peter Entschev, Brian Kloppenborg,

James Malcolm, and John Melonakos. 2015. ArrayFire - A high performance software library for parallel computing

with an easy-to-use API. https://github.com/arrayfire/arrayfire

Received 28 December 2023; revised 22 June 2024; accepted 13 August 2024

ACM Trans. Arch. Code Optim., Vol. 21, No. 4, Article 91. Publication date: November 2024.

http://vcl.ece.ucdavis.edu/pubs/2017.02.VLSIintegration.TechScale/
https://doi.org/10.1145/296399.296442
http://ptm.asu.edu/
https://doi.org/10.1109/JSSC.2019.2939682
https://doi.org/10.1109/FCCM51124.2021.00018
https://github.com/arrayfire/arrayfire

