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ABSTRACT

Automating the hardware and software stack design of domain-
specific accelerators can enable a much broader applicability of
efficient accelerator architectures.

We take the position that what distinguishes domain-specific
accelerators is their degree of generality along key dimensions (eg.
generality of control patterns, memory access, reuse, and paral-
lelism). Generality is expensive in terms of hardware overhead,
so accelerator designers carefully choose which dimensions to be
general.

However, automated accelerator design tools (eg. high-level syn-
thesis) typically focus their analysis on optimizing a single pro-
gram region (allocating resources, executing operations in parallel,
pipelining and orchestrating data, etc.). Generality, if it is needed,
is left to the programmer to reason about in an awkward way. We
argue that a new approach is needed, where generality is an integral
and explicit aspect of automated accelerator design.

This position raises difficult questions of how should generality
be expressed in design exploration and how the hardware designer
should convey the types of generality required. We discuss with
possible solutions based on our experiences with the DSAGEN
accelerator design framework.

1 GENERALITY DEFINES ACCELERATORS

One key challenge in automated accelerator generation is designing
for generality. In fact, we posit that it is the degrees of generality
along various dimensions that are the key distinguishing features
of existing manually designed accelerators. Figure 1 overviews
possible generality dimensions:
• Inst./Datatype: Breadth of compute units/datatypes.
• Control: The degree to which arbitrary forms of control
flow are supported. For example, the ability to execute
data-dependent control efficiently subsumes static control.

• Memory Access: How effective are arbitrary memory access
patterns. For example, indirect access can be viewed as a gen-
eralization of simpler affine access patterns.
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Figure 1: Dimensions of Generality in Accelerators

• Reuse: The degree to which dynamic data-reuse is supported.
For example, this could mean the difference between the use
of scratchpads and caches.

• Network: The flexibility in routing between hardware units.
Eg. the difference between a fixed network (eg. systolic ar-
ray) compared to a reconfigurable network (eg. static CGRA
network or a dynamically routed Network on Chip).

• Parallelism: To what degree can irregular parallelism be exe-
cuted efficiently. For example, the support for task parallelism
with programmable scheduling policies and load balancing.

These dimensions of generality help explain the tradeoffs that
accelerators make. Take the DianNao [2] accelerator for dense
deep learning kernels: it provides just enough access-generality
to support the different patterns required for matrix multiplica-
tion, and just enough network/instruction generality to support
fused non-linear transforms. An architecture like Chronos [1] is
extremely flexible in its parallelism support, but uses fixed-function
PEs. Q100 [6] has very efficient support for data-dependent con-
trol flow (joins/partitions), but has no support for general memory
access (only contiguous). Graphdyns [7] has general support for in-
direct memory, remote atomics, and flexible load balancing, but can
only support synchronous parallelism and programmer-controlled
scratchpads for exploiting reuse.

Further, the aspects of the design which are general are the
primary source of hardware cost. The task queue in Chronos costs
more resources than any processing element. The crossbar that
enables indirect access in graph accelerators is a major source of
area overhead (often the largest source [7]). The partitioners in Q100
cost roughly 50% area in most designs. In the era of specialization,
generality has to be applied judiciously.
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Figure 2: Maintaining Generality During DSE

2 REPRESENTING GENERALITY

Because generality is so critical to the design process, we argue that
it must be somehow represented and optimized for during hardware
exploration and generation. Certain forms of generality are simple
to express as categorical traits: ie. supports affine memory access,
supports coherent caches, etc. Cross-cutting concerns are perhaps
best-expressed in this simple manner, and one could imagine these
being parameters of a template architecture.

However, other characteristics cannot be expressed in such broad
strokes. Take the network generality as an example, specifically in
the datapath of the accelerator. Generality manifests in the flexi-
bility of routing between datapath processing elements, perhaps
literally in the instantiation of routers or muxes. The effect of data-
path flexibility depends on the specific connectivity of each router,
so no simple parameter could describe the whole design space.

There are other reasons why a richer representation may be
useful. For example, a more detailed representation would be able
to better express heterogeneity (either within the core or across
cores), which can mean more opportunities for specialization.
Our Approach and Experience: In our own prior work, we have
explored the use of richer representations of the architecture de-
sign space using graphs. In the architecture description graph of
DSAGEN [5], nodes in the graph are hardware primitives like PEs,
switches, routers, and memories. Edges represent direct communi-
cation between elements. The role of the compiler is to spatially
map aspects of the target applications onto this hardware.

Figure 2 shows how this graph-based program representation is
useful during design space exploration (DSE). The input application
is represented as a dataflow graph, and two examples are shown
on the left pane. These applications are mapped to an unoptimized
hardware in the middle pane; here the network and instruction gen-
erality is far too high for a low-overhead accelerator. The mapping
of program to hardware can guide the DSE; a just-general-enough
design, which has far less flexible routing and instructions, is shown
in the right pane. Figure 3 shows the effectiveness of DSAGEN us-
ing a graph-based hardware representation; The “init” bar shows
the area (or power) of a highly-general initial design, while the fol-
lowing three bars shows the same for DSAGEN-generated designs
targeting different workload suites [2–4].
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Figure 3: Results of DSE with Graph-based Representation

While DSAGEN’s implementation does not consider all dimen-
sions of generality described earlier (it focuses on generality within
the datapath and memory patterns), we believe that a graph-based
representation for such capabilities would be useful. For example, a
graph representing the network-on-chip, heterogeneous cores, and
cache/scratchpad hierarchy would yield a rich design space.

There are of course many challenges with such a rich design
space, not the least of which is the difficulty in searching this space
to meet some objective. Another notable challenge is that an irregu-
lar hardware graph with only modest generality can be a challeng-
ing target for the compiler – it is neither representable as a simple
loop nest (eg. like a tensor core), nor is it flexible enough to provide
arbitrary mapping (eg. like a Von Neumann architecture).

3 UNCERTAINTY DEMANDS GENERALITY
A key aspect of design automation is how the user conveys what
kinds of generality are required. The approach we take in DSAGEN
is that the set of input applications forms a proxy for this generality:
If target programs require a variety of unique topologies to be
effective, then a general network will be favored during DSE.

However, this approach leaves no room for expressing uncer-
tainty on what types of workloads will be important for the future,
causing poor over-specialized hardware choices. To explain, often a
designer knows of some programs that will certainly run on the ac-
celerator, while only knowing vague facts about other future target
programs: eg. all future programs will be floating-point; no future
programs will have control flow. How to convey these facts to the
design space explorer is not necessarily trivial. For example, the
designer may be concerned that the datapaths of existing kernels
will change dramatically in future kernels.

Therefore, to avoid overfitting, we believe that uncertainty needs
to be valued during exploration. While this is still an open question,
one possible approach is to mutate target programs during design-
space exploration, according to the distribution of uncertainty along
different parameters. For example, if the datapath topology is un-
certain, then perhaps the datapath mutates randomly during DSE,
so that a overly-specific network becomes insufficient.
Summary: Generality is a first-order consideration for accelerator
design. Generality needs to be reasoned about during accelera-
tor generation, while also taking into account the uncertainty of
behaviors in potential future programs.
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