
Jian Weng(jian.weng@ucla.edu) Teaching Statement
My enthusiasm for teaching started since my high school when teaching lower-grade student al-

gorithms and data structures. Over the past decade, from my dedication to learning and teaching
Computer Science as well as mentoring student researchers, I have built my own unique philosophy of
education. Instead of conveying knowledge itself, my philosophy is to inspire students todevelop their
own understandings in an inclusive, and attractive style so that they all can always learn new things
during their rest of lives.
Teaching is all about insipring understandings. During my undergraduate, I had a tough time to
learn so many classes. Teachers just read the points on the slides and jump into another one before I
understood. I could hardly “memorize” the knowledge without “understanding” the ideas behind them.
I had to spend significantly more time after classes to build my own understanding by digging the basic
ideas behind. I believe a teacher’s mission is to ease the difficulties for students to gain new knowledge
by inspiring their own understanding. This requires the teachers not only develop deep understandings
of the knowledge to convey, but also actively keep track of the students’ study progress.
No students shall be left behind. I still clearly remember the first programming quiz in my freshman
year. The student backgrounds varied — half of the students already learned programming in high
school, and it was the first time for the other half. The first half of students quickly solved all the
questions and left early, while the second half of the students were still struggling to ask the TAs about
the functions to call, which were not covered neither by the teacher nor the TAs before the quiz at all.

At that moment, I wish I were the teacher so that I would arrange the class in a more inclusive
style based on the students’ diverse backgrounds. This is especially critical for the first two years’
undergraduate study. Quizzes, projects, and exams should be developed according to students’ prior
knowledge level so that no student is left behind.
Keep engaged. Keep updated. Studying sometimes can be really hard, but the pain of study can
be eased by making it more attractive. According to my personal experience, there are two keys to
keep it attractive: creating positive feedback, and keeping the knowledge taught up-to-date. With
respect to the positive feedback, I feel really thrilled every time when the program gives results that
align with the theory. One example of how I would apply this is that let students program both naive
and smart implementations to understand the real world impact of theoretical optimizations. With
respect to up-to-date, because of the rapid development of computer science, much knowledge can
be deprecated and replaced in less than a decade. During my undergrad teaching, I improved the
teaching materials of Compiler Design Implementation by refactoring the course project to a modern
programming language.
Teaching during Doctoral Studies During my doctoral studies, I served as a TA for Computer
Systems: A Programmer’s Perspective. In this period, I well practiced my inspiring and inclusive
philosophy.

During the TA office hour, when students brought their questions to me, instead of telling them
the correct answers directly, I would like to inspire the students to figure out the answers from their
own understandings. To specifically figure out what was confusing them, I would work on the questions
with the students step by step until we got to the step where they got stuck. Then I would explain the
missing knowledge that caused the confusion, and how I understood it when learning. Finally, I would
leave the last step, figuring out how these are applied to the questions, to the student.

Moreover, to make sure no student was left behind, I would answer as many questions as possible.
If the time ran out, or the questions were too complicated to have instant answers, I would let the
student leave me an email so that I could get back to them offline. Also, when approaching each due
date of an assignment or lab, I would carefully check the roster to see their status of submission. If
some students are missing, I would email them a reminder and ask if they need an extension (with
penalties, of course).
Mentoring during Doctoral Studies When mentoring student researchers, I believe the key to inspire
their interests of doing research is to ease any unnecessary pains (especially on infrastructure setup)
so that they can focus on the innovations.

Therefore, when a new student comes to me, I always first in-person help them setup the research
infrastructures. When building the research infrastructures, I would walk through the whole code base
from a simple end-to-end example, so that they can understand the role of each code repository in a
full-stack system. For the ideas or works I assign to them, I will break my project down to a gentle
piece for them to start with by locating the exact modules and lines of the code in the repository. After
the work is assigned, I will actively track their progress weekly to see if they need any help or have

1



Jian Weng(jian.weng@ucla.edu) Teaching Statement
progress to report. If so, a meeting can be scheduled to look at the further progress to figure out the
next step together.
TA-ship during Undergraduate During my undergraduate studies, I served as a TA for compiler
construction. I practiced the philosophy of attraction, by aggressively refactoring the course project to
the knowledge up-to-date.

This course used to require students to write a compiler that targets C to MIPS assembly code. C
is an old language with many design concepts that are already deprecated in modern languages, and
MIPS is not a widely used instruction set either. Meanwhile, during the past decade this course has
been taught, the difficulties were increasing unreasonable — all the bonus items achieved last year
would be basic requirements next year. I noticed this ill-formed trend and proposed to refactor the
course project. My colleagues and I then built a new language manual for the compiler education
purpose to better teach the modern compilation principle, and rule out unnecessary difficulties.

For example, because of the limited memory and storage available in the 1980s, the syntax con-
straints in C guarantee this language can be parsed within one frontend pass, which is no longer true
in this century. Therefore, we build a language that should be compiled through multi-pass pars-
ing. This not only attracts students attention by sharing interesting history of computer engineering
development, but also teaches students to implement a modern compiler frontend.
Teaching during High School During my high school’s last year, I taught students in lower grades
(from elementary school to high school) Olympiad Informatics (OI, some Chinese-versioned USACO,
or high-school-versioned ACM ICPC). Many students are recommended to top-tier Computer Science
programs in China because of their excellent performances in OI contests. I believe that is because my
inclusion and attraction philosophy were well practiced.

When preparing my classes for them, I carefully studied all the details of the algorithm or data
structure I am going to teach and considered many aspects that students might cast questions. Besides
the knowledge itself, I also gathered exercises with gradual difficulties, from straightforward ones to
ones with tricks. Students could easily see the performance improvement of a smart algorithm or data
structure compared with a brute force implementation on straightforward examples.

When teaching the class, I would set up several checkpoints. When I was done with explaining
something, I would stop and interactively ask everyone if everything was clear. This makes sure that
everyone is included in the class, and keeps everyone’s attention to the teaching.
Classes to Teach To sum up, my research interests were all inspired by the related classes I learned dur-
ing my undergraduate, including computer architecture, and compiler construction. Thus, to promote
this exciting research area, I would like to teach these classes Introduction to Computer Organization,
Computer Architecture, and Compiler Construction. Based on my experiences and teaching enthusiasm
built when teaching algorithms and data structures in high school, I also would like to teach Discrete
Mathematics, and Data Structures and Algorithms. In addition, my future research will be highly
related to operating systems, so Introduction to Operating Systems is also under my consideration.
Classes to Develop My research area is highly related to software-hardware co-design innovations. I
believe this is a key to the next-generation computing systems, so I would like to open two graduate-
level classes related to my research, including one paper-reading seminar on hardware accelerators, and
one class on non-conventional programming and execution paradigms.

With regard to the seminar class, I will select a set of papers published in recent top-tier conferences
for students to read and present in groups. Each presentation should have three quiz questions to make
the presenters think more when reading the paper for good questions and help everyone in this class
pay attention to the presentation. The final course project can be proposing a minor improvement to
the paper they read, and I will set up a meeting with each group to confirm they are proposing feasible
ideas. It is highly encouraged to quantitatively demonstrate the improvements, but it should also be
acceptable to have qualitative results.

With regard to the class on non-conventional programming and execution model, in my introduction
section, I will first inspire the students to understand the inefficiency of general-purpose units (e.g.
CPU), and lead them to realize the rationale and necessity of having specialized hardware. And then, I
will let the students do different programming practices, starting with tuning the performance of a CPU
and GPU code. I will also apply to both AWS and Google Cloud for the access of their deep neural
network accelerators so that the students can try accelerated programming models in data centers and
understand the status of hardware specialization in industry.

2


